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Introduction
. . . ... to me

• Prof. of Statistical Learning at Lancaster since 2014.
Previously mathematics department at University of Bristol

• PI on EPSRC Data Science of the Natural Environment
project (2018–2023)

• Researcher on EPSRC/BT Next Generation Converged
Digital Infrastructure (2018–2023)

• Was consultant at Prowler.io (now Secondmind.ai),
2018–2020.



Introduction
. . . to mathematical sciences at Lancaster

MARS (Maths for AI in Real-world Systems

• £15M investment to expand mathematical sciences at
Lancaster (focus is AI especially with applications in health,
environment, engineering, cybersecurity)

• 10 new permanent positions, 4 still to recruit (all levels)
• 8 post-doc positions, recruiting 2025/26

ProbAI research hub

• £10M to build collaborations across multiple universities and
industry, focusing on probabilistic techniques for AI

• Recruiting post-docs imminently



Introduction
. . . to the talk

• Introduction
• Stochastic fictitious play and stochastic approximation
• Two-timescales stochastic approximation
• Applications:

• Actor–critic learning
• Player-dependent learning rates
• Learning in stochastic games
• Noise reduction in gradient estimation



Inner loops

Often we might want to run an inner loop between adaptations:
Clinical trials Several treatments. Experiment enough with each

treatment. Adapt the set of treatments and repeat.
Games Fix the (mixed) strategies. Play long enough to learn

the strategies. Adapt the strategies and repeat.
Deep learning Fix the weights. Gather enough observations with

these weights. Adapt the weights and repeat.

Generally A system has parameters θ and a performance
gradient v(θ). If v is not analytically available, fix θ
for long enough to reliably estimate v(θ) on the
basis of observations, update θ and repeat.

Two timescales helps to avoid “fix” and “enough”
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Normal form games
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
• Finite set of players, labeled i
• Each player has an action space Ai ; joint action space

A = A1 × · · · × AN

• Usually we consider mixed strategies πi ∈ ∆(Ai); joint mixed
strategies π ∈ ∆

• Reward functions extend to r i : ∆ → R



Normal form games
Equilibrium

Response to (beliefs about) other players becomes key.
Define the best response correspondence

bi(π−i) = argmax
πi∈∆(Ai )

r i(πi , π−i)

{Nash equilibria} := {fixed points πi ∈ bi(π−i)}

Often we want a continuous response. The canonical example is
the smooth best response function β i

τ (π
−i) satisfying

β i
τ (π

−i)(ai) ∝ exp(r i(ai , π−i)/τ)

{fixed points πi = β i
τ (π

−i)} =: {smoothed Nash equilibrium}
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Normal form games
Fictitious play

Even if the game is fully known, things are non-trivial!

Fictitious play

• Repeatedly play the game
• On iteration n, estimate πi by σi

n, the empirically observed
distribution of opponent actions so far

• Play a best response ai
n+1 ∈ bi(σ−i

n )

σi
n+1(a

i) =
1

n + 1

n+1∑
m=1

I{ai
m=ai} = σi

n(a
i)+

1
n + 1

[
I{ai

n+1=ai} − σi
n(a

i)
]
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Normal form games
Fictitious play

Even if the game is fully known, things are non-trivial!

((((((((Fictitious play Stochastic fictitious play

• Repeatedly play the game
• On iteration n, estimate πi by σi

n, the empirically observed
distribution of opponent actions so far

•
((((((((((((((((((

Play a best response ai
n+1 ∈ bi(σ−i

n ) Play ai
n+1 ∼ β i(σ−i

n )

σi
n+1(a

i) =
1

n + 1

n+1∑
m=1

I{ai
m=ai} = σi

n(a
i) +

1
n + 1

[
I{ai

n+1=ai} − σi
n(a

i)
]

σi
n+1 = σi

n +
1

n + 1

[
β i(σ−i

n )− σi
n + M i

n+1

]



Stochastic approximation

θt+1 = θt + αt+1 {F (θt) + et + Mt+1}

with αt → 0, et → 0 and Mt a “Martingale difference sequence”.

• Robbins–Monro
• Kiefer-Wolfowicz
• Ljung
• Kushner
• Benveniste, Metivier and Priouret
• Duflo
• Borkar
• Benaı̈m

Rearrange:
θt+1 − θt

αt
= F (θt) +

Looks like a discretisation of

θ̇ = F (θ).

Theorem (ish)

If the ODE has a unique globally attracting fixed point θ⋆ then the
stochastic approximation iterates converge almost surely to θ⋆
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Normal form games
Smooth best response dynamics

Recall stochastic fictitious play (SFP):

σt+1 = σt +
1

t+1 {β(σt)− σt + Mt+1}

This is a stochastic approximation with F (σt) = β(σt)− σt

Hence SFP converges if the smooth best response dynamics

σ̇ = β(σ)− σ

are globally convergent

Convergence in zero-sum-games, potential games, some other
less obvious classes (Benaı̈m and Hirsch, Hofbauer, others)



Normal form games
Radically uncoupled

Suppose can’t observe opponent actions and don’t know the
payoff matrix. Now what?!

Each player now faces a bandit problem ⇒ Use RL in bandits
approach ⇒ Individual Q-learning (Leslie and Collins 2006)

Can mixed strategies behave like fictitious play beliefs

πt+1 = πt + αt+1 {β(πt)− πt}?

Yes, if each player can calculate β i(π−i
t ) ∝ exp(r i(·, π−i

t )/τ)
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Normal form games
Estimating r i(·, π−i)

• “Wait everybody, don’t move your πi , we’re all going to
observe for a while”

• Play repeatedly and estimate r i(ai , π−i) to be the average
reward obtained with i play action ai

• When these have converged, everybody adjust πi a little bit

Like in fictitious play, the averages can be calculated “online”:

Qi
n+1(a

i) = Qi
n(a

i) +
I{ai

n=ai}

κi
n(ai)

{
R i

n − Qi
n(a

i)
}
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Stochastic approximation
Two timescales (Borkar 1997)

Two SA processes, with αn/γn → 0

θn+1 = θn + αn+1 {F (θn, ϕn) + en + Mn+1}
ϕn+1 = ϕn + γn+1 {G(θn, ϕn) + hn + Nn+1}

The approximated differential equation is

˙(
θ

ϕ

)
=

(
0

G(θ, ϕ)

)



Stochastic approximation
Two timescales (Borkar 1997)

Two SA processes, with αn/γn → 0

θn+1 = θn + αn+1 {F (θn, ϕn) + en + Mn+1}
ϕn+1 = ϕn + γn+1 {G(θn, ϕn) + hn + Nn+1}

Rewrite as a single SA, with learning parameters γn(
θn+1

ϕn+1

)
=

(
θn

ϕn

)
+ γn+1

( αn+1
γn+1

{F (θn, ϕn) + en + Mn+1}
G(θn, ϕn)+ hn + Nn+1

)

The approximated differential equation is

˙(
θ

ϕ

)
=

(
0

G(θ, ϕ)

)



Stochastic approximation
Two timescales (Borkar 1997)

Two SA processes, with αn/γn → 0

θn+1 = θn + αn+1 {F (θn, ϕn) + en + Mn+1}
ϕn+1 = ϕn + γn+1 {G(θn, ϕn) + hn + Nn+1}

Rewrite as a single SA, with learning parameters γn(
θn+1

ϕn+1

)
=

(
θn

ϕn

)
+ γn+1

(
0+ ẽn
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Stochastic approximation
Convergence of the fast timescale

˙(
θ

ϕ

)
=

(
0

G(θ, ϕ)

)

Assumption:

For each θ there is a unique, globally attracting, fixed point of the
“fast ODE” ϕ̇ = G(θ, ϕ). Call this ϕ⋆(θ).

Under this assumption, the set{(
θ

ϕ⋆(θ)

)
: θ ∈ Θ

}
is globally attracting;

(
θn
ϕn

)
converges to this set



Stochastic approximation
Convergence of the slow timescale

We have shown that ϕn = ϕ⋆(θn) + ϵn. So

θn+1 = θn + αn+1 {F (θn, ϕn) + en + Mn+1}
= θn + αn+1 {F (θn, ϕ

⋆(θn) + ϵn) + en + Mn+1}
= θn + αn+1 {F (θn, ϕ

⋆(θn)) + ηn + en + Mn+1}

The “slow ODE” is

θ̇ = F (θ, ϕ⋆(θ))

If the fast and slow ODEs both converge, then we’re in business!



Normal form games
Actor–critic

Put the inner loop estimation of r i(·, π−i) on the fast timescale:

πn+1 = πn +αn+1 {β(Qn)− πn + Mn+1}

Qi
n+1(a

i) = Qi
n(a

i) +γn+1I{ai
n=ai}

{
R i

n+1 − Qi
n(a

i)
}

with learning parameters such that αn
γn

→ 0

Slow timescale: analyse as if Q i(ai) = r i(ai , π−i)

π̇i = β(Q⋆,i(π))− πi) = β(r i(·, π−i))− πi = β(π−i)− πi

which is the smooth best response dynamics

The actor–critic algorithm converges in the same games as
stochastic fictitious play
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Player-dependent rates
Leslie and Collins (2003)

Revert to stochastic fictitious play, two player games:

σ1
n+1 = σ1

n + 1
n+1

{
β1(σ2

n)− σ1
n + M1

n+1

}
σ2

n+1 = σ2
n + 1

n+1

{
β2(σ1

n)− σ2
n + M2

n+1

}

Slow timescale: analyse as if σ2
n = β2(σ1

n)

σ̇1 = β1(β2(σ1))− σ1

• This ODE has a globally attracting fixed point for zero-sum
games, potential games and Shapley’s game

• The ODE falls outside Hart and Mas-Colell’s impossibility
framework

• I have yet to find a game in which it does not converge
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σ1
n+1 = σ1

n + α1
n+1

{
β1(σ−1
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σ4

n+1 = σ4
n + α4

n+1

{
β4(σ−4

n )− σ4
n + M4

n+1

}
... with αi

n/α
i+1
n → 0

Theorem-ish
If the fast strategies σ>i converge to a unique β>i(σ≤i) for fixed
σ≤i , for each i , then the system converges iff
σ̇1 = β1(β>1(σ1))− σ1 converges

Slow timescale: analyse as if σ2
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Stochastic games
Setup

Stochastic game framework (Shapley 1953):
• Finite set of players i ∈ {1, . . . ,N}
• Finite set of states s ∈ S
• Finite set of actions Ai(s) for each player i in each state s
• Transitions Ps,s′(a) and rewards r i(s,a) for a = (a1, . . . ,aN)
• Players attempt to maximise cumulative discounted reward

Key concept: auxiliary games

At each state s, all players choose actions, receive reward and
move to next state. Next state has ‘continuation payoffs’ V i(s′).
Auxiliary game at s, with continuation payoffs V has payoff matrix

qi
s,V (a) = r i(s,a) + δ

∑
s′

Pss′(a)V i(s′)



Learning in stochastic games
Introduction

“Normal-forming” (Stochastic game strategy ↔ Normal form action):
Not v interesting! Finding a best response is solving
an MDP. Mixed strategies are weird, except perhaps
in evolutionary interpretation.

Per-state fictitious play: This can work (Sayin, Parise, Ozdaglar,
SICON 2022 building on Leslie, Perkins, Xu, JET
2020). But can we do radically-uncoupled learning?

Simple Q-learning: Many hint this is solved. It is not!



Learning in stochastic games
Key idea

Challenge: There are many moving parts. State values we are
yet to receive are affected by current strategies

Solution (ish): Fixing the “continuation payoffs” and learning in
just the “auxiliary games” makes things much easier

Finishing off: If the auxiliary games are all played ‘at’ equilibrium,
then the state values will converge



Learning in stochastic games
Reinforcement learning

V i
n(s) = max

ai
Qi

n(s,a
i)

Qi
n+1(s,a

i) = Qi
n(s,a

i)+

γnI{(sn,ai
n)=(s,a)}

{
r i
n + δV i

n(sn+1)− Qi
n(s,a)

}

where πi
n(s,a) ∝ exp(Qi

n(s,a)/τn)

and αn/γn → 0
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Learning in stochastic games
Reinforcement learning

V i
n+1(s) = V i

n(s) + αnI{sn=s}

{∑
b π

i
n(s,b)Qi

n(s,b)− V i
n(s)

}

Qi
n+1(s,a

i) = Qi
n(s,a

i)+
γn

πi
n(s,a)

I{(sn,ai
n)=(s,a)}

{
r i
n + δV i

n(sn+1)− Qi
n(s,a)

}

where πi
n(s,a) ∝ exp(Qi

n(s,a)/τn)

and αn/γn → 0



Learning in stochastic games
Decoupling step

Two-timescale approach decouples the states:

E


Q i

n+1(s,a)− Q i
n(s,a)

V i
n+1(s)− V i

n(s)

τn+1 − τn

 = α


q i

n(s, (a, π
−i
n (s)))− Q i

n(s,a)

0

0

+en+1

where qi
n(s,a) = r i(s,a) + δ

∑
s′ Pss′(a)V i

n(s′).

This fast timescale corresponds to considering “individual
Q-learning” (Leslie and Collins 2005) in an arbitrary fixed
auxiliary game with payoffs qi(s, ·).



Learning in stochastic games
New Lyapunov function (fast timescale)

• Q̇i(a) = qi(a, π−i)− Qi(a) with πi(a) ∝ exp(Qi(a)/τ)
• Introduce auxiliary vars σi defined by σ̇i = πi − σi .
• New Lyapunov function:

L(Q1,Q2, σ1, σ2) =

∑
i=1,2

{
πi · Qi + τv i(πi)

}
− λζ


+

+
∑

i=1,2

∥Qi − qi(·, σ−i)∥2

where λ ∈ (1, γ−1) and ζ = ∥q1 + (q2)T∥max + τ log(|A1||A2|).



Learning in stochastic games
New Lyapunov function (fast timescale)

L(Q1,Q2, σ1, σ2) =

∑
i=1,2

{
πi · Qi + τv i(πi)

}
− λζ


+

+
∑

i=1,2

∥Qi − qi(·, σ−i)∥2

• Start with standard Lyapunov function for smooth BR learning
• λζ term means we only make this small, not 0
• Second summation shows Q are asymptotically belief based



Learning in stochastic games
New Lyapunov function (fast timescale)

L(Q1,Q2, σ1, σ2) =

∑
i=1,2

{
πi · Qi + τv i(πi)

}
− λζ


+

+
∑

i=1,2

∥Qi − qi(·, σ−i)∥2

So, there exists ϵn → 0, such that∑
i=1,2

{
πi

n · Qi
n + τnv i(πi

n)
}
≤ λ

{
∥q1

n + (q2
n)

T∥max + τn log(|A1||A2|)
}
+ϵn



Stochastic games
Sketch proof

• For fixed continuation payoffs V , we have shown convergence
(admittedly to a set)

• The two-timescales theory allows us to analyse V as if the Q
values are always in this set

• Convergence follows in two-player zero-sum games

Refs:
• Leslie, Perkins, Xu, JET 2020
• Sayin, Parise, Ozdaglar, SICON 2022
• Sayin, Zhang, Leslie, Basar, Ozduglar, NeurIPS 2020



Gradient noise reduction

In continuous games, we use a very different notation:
• Actions are x = (x1, . . . , xN)

• Payoffs are ui : X → R
• Individual payoff gradients are v i(x i , x−i) = ∇x i ui(x)
• Pseudogradient is v(x) = (v1(x), . . . , vN(x))

Often players need to estimate v i(x). Estimates may have very
high variance.



Gradient noise reduction

Averaging several observations v i(x) + ϵi
n would reduce the

variance
So....

x i
n+1 = x i

n + αn+1V i
n

V i
n+1 = V i

n + γn+1

{
v i

n(x
i
n) + ϵi

n − V i
n

}
For fixed x , the V i

n converge to v i
n. Then the slow equation

follows the gradient nicely.



Gradient noise reduction

Rate of convergence is the elephant in the two-timescales room!

My student Miles Elvidge is working on some really cool ideas
along these lines

Essentially, work out what the fast timescale analysis tells you,
then plug that into a finite time analysis on the slow timescale



Summary

• Whenever an inner loop would be useful, think about using
two timescales

• Has been deployed in:
• actor–critic learning
• player-dependent learning rates
• stochastic games
• gradient smoothing

• Convergence rates are hard, but very recent work is getting
there
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