Score Matching Variations

Neural Network Choice

Training Diffusion Models (with applications to statistics)

Connie Trojan

November 2024

・ロ・・雪・・雨・・雨・ ・日・ うらぐ

Training diffusion models

Score Matching Variations

Neural Network Choice

Diffusion Model Recap

Perturb the data with a stochastic differential equation

$$dX_t = \underbrace{f(t)X_t dt}_{\text{drift}} + \underbrace{g(t)dW_t}_{\text{noise}}$$

- For SDEs of this form, the distribution of $X_t | X_0$ will be $N(m(t)X_0, s(t)^2)$ where *m* and *s* can be found by integration
- This is a generalisation of the discrete time noising processes used by and Ho et al. [2020] and Song and Ermon [2019]

Time Reversal

The time reversal of the noising SDE is

$$dX_t = \left[f(t)X_t - g(t)^2 \nabla_{\times} \log p_t(X_t)\right] dt + g(t)dW_t$$

- Here, the score function ∇_x log p_t(x) is the gradient of the log pdf of X_t with respect to x.
- If we can approximate this, the above SDE can be used to generate new samples

Score Matching

- Method for approximating an unnormalised probability density by learning its score function
- If we had access to the true score, the ideal objective would be explicit score matching:

$$J(heta) = \mathbb{E}_{p(x)} \left[rac{1}{2} \| \psi(x; heta) -
abla_x \log p(x) \|_2^2
ight]$$

 This minimises the MSE between the approximation ψ(x; θ) and the true score ∇p(x)

Denoising Score Matching

- Denoising score matching [Vincent, 2011], is an approximation that matches the score function of a kernel density estimate of the target density
- Using kernel q, this can be seen as the noised data distribution $\tilde{x} = x + e$, where $e \sim q(e)$.
- Vincent [2011] showed that the following objective is equivalent to explicit score matching on the score of x:

$$L_{DSM}(heta) = \mathbb{E}_{q(x, ilde{x})} \left[rac{1}{2} \| \psi(ilde{x}; heta) -
abla_{ ilde{x}} \log q(ilde{x} - x) \|_2^2
ight]$$

Score Matching Variations

Neural Network Choice

Denoising Score Matching

$$L_{DSM}(heta) = \mathbb{E}_{
ho_0(x)q(ilde{x}|x)} \left[rac{1}{2} \|\psi(ilde{x}; heta) -
abla_{ ilde{x}} \log q(ilde{x}|x)\|_2^2
ight]$$

- This does not require the score of the data density, only the score of the noising kernel q.
- For example, for a Gaussian kernel e ~ N(0, σ²) we have ∇_{x̃} log q(x̃|x) = 1/σ²(x − x̃), the direction that removes the noise from x̃.
- If we approximate p₀ with a finite sample, this matches the score of a kernel density estimate rather than the true p_t

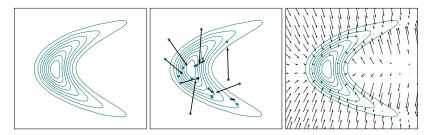


Figure: Score matching on a warped Gaussian: target distribution, noised samples at t = 0.15 with direction of $\nabla \log p_{t|0}$ indicated by arrows, learned score function at $t \approx 0$.

Why use a diffusion?

- In principle, we could simply do this for some small noise level and use e.g. unadjusted Langevin dynamics to generate new samples
- There are obvious problems with this KDE works poorly for high dimensional distributions
- Song and Ermon [2019] showed empirically that doing this fails to recover mode weights in mixture distributions even when the true score is used

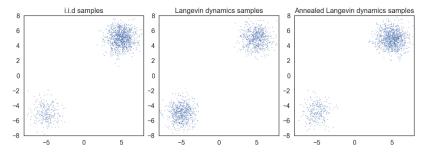


Figure: From Song and Ermon [2019]: target distribution, samples using ULA with the true score function, samples using ULA with a sequence of noised densities

Time Conditioning

- Although we are training with simple KDEs, the 'magic' of diffusion models comes from using a sequence of noise levels, and from training a single model across time
- Score estimates are implicitly smoothed through time in a way that can give better estimates in low density regions than could be obtained with separate models
- This benefit comes from the neural network approximation choosing a good architecture is key

- So, we need an objective function that trains a single model for all noise levels
- We choose the kernel q in DSM to be the transition density $p_{t|0}(x_t | x_0)$ of the forward diffusion, to learn the desired $\nabla \log p_t$
- Song and Ermon [2019] incorporate time conditioning in the objective by taking a weighted expectation over t:

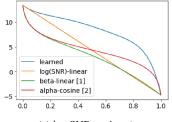
$$\mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{p_0(x)p_t(x_t|x)} \left[\frac{1}{2} \| \psi(x_t, t; \theta) - \nabla_{x_t} \log p_{t|0}(x_t \mid x_0) \|_2^2 \right] \right\}$$

$$\mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{\rho_0(x)\rho_t(x_t|x)} \left[\frac{1}{2} \| \psi(x_t, t; \theta) - \nabla_{x_t} \log \rho_{t|0}(x_t \mid x_0) \|_2^2 \right] \right\}$$

- Here, t is distributed uniformly on [0,1], and $\lambda : \mathbb{R} \to \mathbb{R}_{>0}$ is a weighting function.
- Song et al. [2021] showed that choosing the weighting $\lambda(t) = g(t)^2$ makes this an upper bound for the model KL divergence

Learning the noising process

- Using the SDE formulation allows us to vary the time discretisation used in sampling
- In continuous time, different noising processes can be equivalent to each other. This means the SDE itself does not have to be fixed in advance either
- Kingma et al. [2023] reparameterise the DSM objective to show that it is invariant to changes to the VP SDE that preserve the signal-to-noise ratio at t = 0 and t = 1
- This can be used to optimise the noise schedule to reduce the variance of the objective function, speeding up training



(a) $\log SNR$ vs time t

SNR(t) schedule	Var(BPD)
Learned (ours)	0.53
log SNR-linear	6.35
β -Linear [1]	31.6
α -Cosine [2]	31.1

(b) Variance of VLB estimate

Figure: From Kingma et al. [2023] - comparison of objective function variance for different noise schedules

What if we know p_0 ?

- There has been much recent interest in using diffusion models for sampling in Bayesian statistics, even when the target density is known:
 - They are useful as surrogate models when the target density is expensive to evaluate
 - They can successfully sample from complex, multi-modal distributions, so are attractive as an alternative to MCMC

Target Score Matching

- A key difficulty is that the noised density p_t is typically intractable even if we know the target density p₀, so we still need to train a score approximation
- Denoising score matching (DSM) often struggles to approximate the score function at low noise levels, since the variance of its score estimates explodes as $t \rightarrow 0$
- De Bortoli et al. [2024] proposed an alternative objective, which uses a rescaling of the unnoised score function rather than the score of the noising distribution

Target Score Matching

• The following objective can be used to estimate $\nabla \log p_t$:

$$L_{TSM}(\theta, t) = \mathbb{E}_{X_0, X_t} \left[\|\psi(x_t, t; \theta) - m(t)^{-1} \nabla \log p_0(x_0)\|_2^2 \right]$$

- L_{TSM} is very well behaved near t = 0 where the regression target is a low variance estimator of the true score, less so for large t since typically $m(t) \rightarrow 0$
- We can get an objective that is well behaved across time by taking a weighted combination of TSM and DSM

Diffusion-Based Samplers

- TSM incorporates evaluations of the true density, but it still requires an initial sample from the target distribution to compute the objective function
- Diffusions have desirable properties for sampling from complex distributions (e.g. good mixing for multimodal distributions) so there has been recent interest in using them for sampling
- For example, Phillips et al. [2024] start with an initial approximate sample, which is refined over repeated rounds of training

Motivation: Diffusion vs Tempering

Diffusion models interpolate between the target distribution and a tractable distribution, much like tempering [Neal, 2001]:

$$p_t(x) = p(x)^{1-t} \phi(x)^t$$

- Unlike diffusions, the intermediate densities p_t in tempering are known and do not have to be estimated
- However, diffusions can outperform tempering on multimodal distributions with differing mode weights

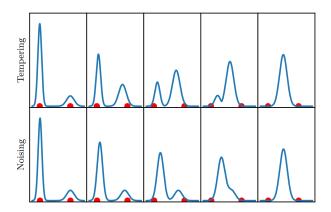


Figure: From Phillips et al. [2024], comparing the intermediate densities in tempering and noising. In tempering, the mode weights can 'switch'.

Score Network

- Can in theory use any architecture that maps $\mathbb{R}^d \to \mathbb{R}^d$ with time as an input
- In practice, the network can have a huge impact on results. Try and use domain knowledge to choose an appropriate architecture, add time as an input to each layer
- For 'low dimensional' distributions ($d \approx 100$), a small feedforward MLP or ResNet will do

Denoising Score Matching

Score Matching Variations

Neural Network Choice

The U-net

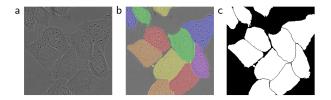


Figure: From Ronneberger et al. [2015]: image segmentation

The U-net is an architecture proposed by Ronneberger et al. [2015] for image-to-image tasks, which has become ubiquitous as an architecture for score nets in image generation

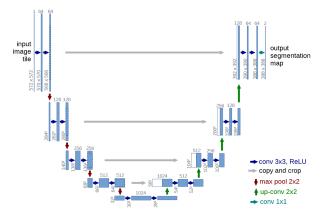
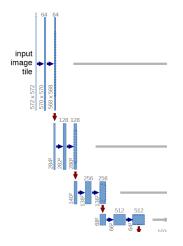


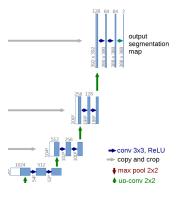
Figure: From Ronneberger et al. [2015]: U-net architecture

(Exact details like number/type of convolutions and inclusion of dense layers can vary)



- The LHS is a typical CNN architecture, with a sequence of convolutions that decrease the resolution and increase the number of channels
- The idea is for each channel to extract a different key feature of the image

- The RHS mirrors the LHS, with transposed convolutions returning the image to its original dimensions
- This uses the extracted features to construct an output image



- The low-res final output of the LHS does not contain precise information about where features are located, but we need each output pixel to relate to the corresponding input pixel
- So, the full U-net includes skip connections concatenating outputs from the LHS onto the inputs of the RHS to help with localisation

Energy based parameterisation

- Since the score function of a distribution determines its density up to normalising constant, we can use score matching to estimate the target density directly
- This idea was proposed by Salimans and Ho [2021] as a way of ensuring that the score approximation is in fact a valid score function
- This is known as an energy-based model (EBM) because we model an energy function E(x, t; θ) and approximate p_t by exp(-E(x, t; θ))

A common parameterisation is:

$$E(x,t;\theta) = \frac{1}{2s(t)}||x-\psi(x,t;\theta)||_2^2,$$

where $\psi(x, t; \rho) : \mathbb{R}^d \to \mathbb{R}^d$ is a neural network and $s(t)^2$ is the variance of the noising kernel $p_{t|0}$

- The gradient -∇_xE(x, t; ρ) is substituted into the usual score matching objective in training
- Salimans and Ho [2021] found that this performed similarly but no better than the usual parameterisation

Composing diffusion models

Du et al. [2023] found that using an EBM to perform MCMC sampling enables sampling from compositions of diffusion models

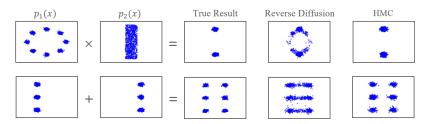


Figure: From Du et al. [2023]: sampling from product and mixture distributions, where a reverse SDE is not available

Score Matching Variations

Neural Network Choice

Figure: Du et al. [2023] - classifier guidance as sampling from a product distribution

Figure: Du et al. [2023] - using product distributions to combine prompts

Training diffusion models

Applications in Statistics

- Sampling from products of posterior distributions can be used in Bayesian statistics to sample from the posterior conditioned on their pooled datasets
- Simulation-based inference [Geffner et al., 2023] approximating single-observation posteriors requires fewer simulator calls than conditioning jointly on larger datasets
- Divide-and-conquer MCMC [Trojan et al., 2024] if the full dataset is very large, it can be computationally intractable to sample directly from the full posterior distribution

References I

- V. De Bortoli, M. Hutchinson, P. Wirnsberger, and A. Doucet. Target score matching, 2024. arXiv preprint arXiv:2402.08667.
- Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein, A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with energy-based diffusion models and MCMC. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 8489–8510. PMLR, 2023.
- T. Geffner, G. Papamakarios, and A. Mnih. Compositional score modeling for simulation-based inference, 2023. arXiv preprint arXiv:2209.14249v3.
- J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems*, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

References II

- D. P. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models. *arXiv preprint 2107.00630*, 2023.
- R. M. Neal. Annealed importance sampling. *Statistics and Computing*, 11:125–139, 2001.
- A. Phillips, H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet. Particle denoising diffusion sampler, 2024. arXiv preprint arXiv:2402.06320.
- O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*, pages 234–241. Springer International Publishing, 2015.
- T. Salimans and J. Ho. Should EBMs model the energy or the score? In Energy Based Models Workshop - ICLR 2021, 2021.

References III

- Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In *Advances in Neural Information Processing Systems*, volume 32, pages 11895–11907. Curran Associates, Inc., 2019.
- Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood training of score-based diffusion models. In *Advances in Neural Information Processing Systems*, volume 34, pages 1415–1428. Curran Associates, Inc., 2021.
- C. Trojan, P. Fearnhead, and C. Nemeth. Diffusion generative modelling for divide-and-conquer MCMC. *arXiv preprint 2406.11664*, 2024.
- P. Vincent. A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7):1661–1674, 2011.