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Diffusion Model Recap

Perturb the data with a stochastic differential equation

dXt = f (t)Xtdt︸ ︷︷ ︸
drift

+ g(t)dWt︸ ︷︷ ︸
noise

For SDEs of this form, the distribution of Xt |X0 will be
N(m(t)X0, s(t)

2) where m and s can be found by integration

This is a generalisation of the discrete time noising processes
used by and Ho et al. [2020] and Song and Ermon [2019]

Training diffusion models



Denoising Score Matching Score Matching Variations Neural Network Choice References

Time Reversal

The time reversal of the noising SDE is

dXt =
[
f (t)Xt − g(t)2∇x log pt(Xt)

]
dt + g(t)dWt

Here, the score function ∇x log pt(x) is the gradient of the
log pdf of Xt with respect to x .

If we can approximate this, the above SDE can be used to
generate new samples
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Score Matching

Method for approximating an unnormalised probability density
by learning its score function

If we had access to the true score, the ideal objective would
be explicit score matching:

J(θ) = Ep(x)

[
1

2
∥ψ(x ; θ)−∇x log p(x)∥22

]
This minimises the MSE between the approximation ψ(x ; θ)
and the true score ∇p(x)
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Denoising Score Matching

Denoising score matching [Vincent, 2011], is an
approximation that matches the score function of a kernel
density estimate of the target density

Using kernel q, this can be seen as the noised data
distribution x̃ = x + e, where e ∼ q(e).

Vincent [2011] showed that the following objective is
equivalent to explicit score matching on the score of x̃ :

LDSM(θ) = Eq(x ,x̃)

[
1

2
∥ψ(x̃ ; θ)−∇x̃ log q(x̃ − x)∥22

]
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Denoising Score Matching

LDSM(θ) = Ep0(x)q(x̃ |x)

[
1

2
∥ψ(x̃ ; θ)−∇x̃ log q(x̃ |x)∥22

]

This does not require the score of the data density, only the
score of the noising kernel q.

For example, for a Gaussian kernel e ∼ N(0, σ2) we have
∇x̃ log q(x̃ |x) = 1

σ2 (x − x̃), the direction that removes the
noise from x̃ .

If we approximate p0 with a finite sample, this matches the
score of a kernel density estimate rather than the true pt
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Figure: Score matching on a warped Gaussian: target distribution, noised
samples at t = 0.15 with direction of ∇ log pt|0 indicated by arrows,
learned score function at t ≈ 0.
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Why use a diffusion?

In principle, we could simply do this for some small noise level
and use e.g. unadjusted Langevin dynamics to generate new
samples

There are obvious problems with this - KDE works poorly for
high dimensional distributions

Song and Ermon [2019] showed empirically that doing this
fails to recover mode weights in mixture distributions even
when the true score is used
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Figure: From Song and Ermon [2019]: target distribution, samples using
ULA with the true score function, samples using ULA with a sequence of
noised densities
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Time Conditioning

Although we are training with simple KDEs, the ‘magic’ of
diffusion models comes from using a sequence of noise levels,
and from training a single model across time

Score estimates are implicitly smoothed through time in a way
that can give better estimates in low density regions than
could be obtained with separate models

This benefit comes from the neural network approximation -
choosing a good architecture is key
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So, we need an objective function that trains a single model
for all noise levels

We choose the kernel q in DSM to be the transition density
pt|0(xt | x0) of the forward diffusion, to learn the desired
∇ log pt

Song and Ermon [2019] incorporate time conditioning in the
objective by taking a weighted expectation over t:

Et

{
λ(t)Ep0(x)pt(xt |x)

[
1

2
∥ψ(xt , t; θ)−∇xt log pt|0(xt | x0)∥22

]}
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Et

{
λ(t)Ep0(x)pt(xt |x)

[
1

2
∥ψ(xt , t; θ)−∇xt log pt|0(xt | x0)∥22

]}

Here, t is distributed uniformly on [0, 1], and λ : R → R>0 is
a weighting function.

Song et al. [2021] showed that choosing the weighting
λ(t) = g(t)2 makes this an upper bound for the model KL
divergence
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Learning the noising process

Using the SDE formulation allows us to vary the time
discretisation used in sampling

In continuous time, different noising processes can be
equivalent to each other. This means the SDE itself does not
have to be fixed in advance either

Kingma et al. [2023] reparameterise the DSM objective to
show that it is invariant to changes to the VP SDE that
preserve the signal-to-noise ratio at t = 0 and t = 1

This can be used to optimise the noise schedule to reduce the
variance of the objective function, speeding up training
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Figure: From Kingma et al. [2023] - comparison of objective function
variance for different noise schedules
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What if we know p0?

There has been much recent interest in using diffusion models
for sampling in Bayesian statistics, even when the target
density is known:

They are useful as surrogate models when the target density is
expensive to evaluate

They can successfully sample from complex, multi-modal
distributions, so are attractive as an alternative to MCMC
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Target Score Matching

A key difficulty is that the noised density pt is typically
intractable even if we know the target density p0, so we still
need to train a score approximation

Denoising score matching (DSM) often struggles to
approximate the score function at low noise levels, since the
variance of its score estimates explodes as t → 0

De Bortoli et al. [2024] proposed an alternative objective,
which uses a rescaling of the unnoised score function rather
than the score of the noising distribution
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Target Score Matching

The following objective can be used to estimate ∇ log pt :

LTSM(θ, t) = EX0,Xt

[
∥ψ(xt , t; θ)−m(t)−1∇ log p0(x0)∥22

]
LTSM is very well behaved near t = 0 where the regression
target is a low variance estimator of the true score, less so for
large t since typically m(t) → 0

We can get an objective that is well behaved across time by
taking a weighted combination of TSM and DSM
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Diffusion-Based Samplers

TSM incorporates evaluations of the true density, but it still
requires an initial sample from the target distribution to
compute the objective function

Diffusions have desirable properties for sampling from complex
distributions (e.g. good mixing for multimodal distributions)
so there has been recent interest in using them for sampling

For example, Phillips et al. [2024] start with an initial
approximate sample, which is refined over repeated rounds of
training
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Motivation: Diffusion vs Tempering

Diffusion models interpolate between the target distribution
and a tractable distribution, much like tempering [Neal, 2001]:

pt(x) = p(x)1−tϕ(x)t

Unlike diffusions, the intermediate densities pt in tempering
are known and do not have to be estimated

However, diffusions can outperform tempering on multimodal
distributions with differing mode weights
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Figure: From Phillips et al. [2024], comparing the intermediate densities
in tempering and noising. In tempering, the mode weights can ‘switch’.
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Score Network

Can in theory use any architecture that maps Rd → Rd with
time as an input

In practice, the network can have a huge impact on results.
Try and use domain knowledge to choose an appropriate
architecture, add time as an input to each layer

For ‘low dimensional’ distributions (d ≈ 100), a small
feedforward MLP or ResNet will do
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The U-net

Figure: From Ronneberger et al. [2015]: image segmentation

The U-net is an architecture proposed by Ronneberger et al. [2015]
for image-to-image tasks, which has become ubiquitous as an
architecture for score nets in image generation
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Figure: From Ronneberger et al. [2015]: U-net architecture

(Exact details like number/type of convolutions and inclusion of
dense layers can vary)
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The LHS is a typical CNN
architecture, with a sequence of
convolutions that decrease the
resolution and increase the number
of channels

The idea is for each channel to
extract a different key feature of
the image
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The RHS mirrors the LHS, with
transposed convolutions returning
the image to its original dimensions

This uses the extracted features to
construct an output image
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The low-res final output of the LHS does not contain precise
information about where features are located, but we need
each output pixel to relate to the corresponding input pixel

So, the full U-net includes skip connections concatenating
outputs from the LHS onto the inputs of the RHS to help
with localisation
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Energy based parameterisation

Since the score function of a distribution determines its
density up to normalising constant, we can use score matching
to estimate the target density directly

This idea was proposed by Salimans and Ho [2021] as a way
of ensuring that the score approximation is in fact a valid
score function

This is known as an energy-based model (EBM) because we
model an energy function E (x , t; θ) and approximate pt by
exp(−E (x , t; θ))
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A common parameterisation is:

E (x , t; θ) =
1

2s(t)
||x − ψ(x , t; θ)||22 ,

where ψ(x , t; ρ) : Rd → Rd is a neural network and s(t)2 is
the variance of the noising kernel pt|0

The gradient −∇xE (x , t; ρ) is substituted into the usual score
matching objective in training

Salimans and Ho [2021] found that this performed similarly
but no better than the usual parameterisation
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Composing diffusion models

Du et al. [2023] found that using an EBM to perform MCMC
sampling enables sampling from compositions of diffusion models

Figure: From Du et al. [2023]: sampling from product and mixture
distributions, where a reverse SDE is not available
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Figure: Du et al. [2023] - classifier guidance as sampling from a product distribution

Figure: Du et al. [2023] - using product distributions to combine prompts
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Applications in Statistics

Sampling from products of posterior distributions can be used
in Bayesian statistics to sample from the posterior conditioned
on their pooled datasets

Simulation-based inference [Geffner et al., 2023] -
approximating single-observation posteriors requires fewer
simulator calls than conditioning jointly on larger datasets

Divide-and-conquer MCMC [Trojan et al., 2024] - if the full
dataset is very large, it can be computationally intractable to
sample directly from the full posterior distribution
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