FIRST ORDER
OPTIMISATION
METHODS

CASSANDRA DURR

15 OCTOBER 2025

Lancaster Al (LAI) -

IMAGE SOURCE [0]

SOURCES

Source [2] in references

Chapter b
Source [1] in references

. ~ D
Algorithms for ‘ |
Optimization == mm
Mykel J. Kochenderfer and Tim A. Wheeler T -l I o

Gradient Descent

First-order methods are algorithms that use the first derivative (i.e. gradient) to direct the
optimisation procedure/ search towards a local minimum.

Linear model of g(w) = the first-order Taylor Series approximation: h(w) = g(w?®) + Vg(w®)T(w — w?)

Update equation;

w(k+1) «— W(k) — ang(W(k))

|

The step size/ learning

rate associated with
the kth descent step.

Stopping criteria: BlaEKe[g: e [l=1aks Vg(wk)

becomes sufficiently close to 0.

g (w)

IMAGE SOURCE [2]

Gradient Descent: The Pitfalls

OVERSHOOTING

Too large a step length may result in overshooting
the minimum.
SOURCE [2]

Z21G-ZAGGING

Gradient descent can
result in zig-zagging in
narrow valleys or troughs
SOURCE [1]

Gradient Descent: Zig-Zagqging

Gradient descent tells you
which direction to go in,
but not how far to go.

STEEPEST GRADIENT
DESCENT

Step size/ learning rate
is optimally selected to
produce the largest
gain along the

negative gradient
direction.

SN

Gradient descent provides the direction.

Isolate the hyperplane cutting through the function along
the selected direction.

The intersection of the original function and the
hyperplane is a parabola.

The minimum of the parabola indicates the optimal step

length.
IMAGE SOURCE [3]

Gradient Descent: Zig-Zagqging

Gradient descent tells you
which direction to go in,
but not how far to go.

STEEPEST GRADIENT
DESCENT

Step size/ learning rate
is optimally selected to
produce the largest
gain along the

negative gradient
direction.

However, steepest
gradient descent can
result in zig-zagging in
narrow valleys or troughs.

The steps resulting from
steepest gradient
descent are orthogonal.

If you took a step that
was not orthogonal to
your last step, it would
mean that there is some
shared direction between
your last and next step.
This implies you should
have gone further in your
previous step.

The resulting zig-zagging
is not the most efficient
search through the
space.

IMAGE SOURCE [3]

IMPROVING
GRADIENT DESCENT

This section covers methods
Momentum designed to overcome the

limitations of vanilla gradient
Nesterov descent by incorporating memory
Momentum of past steps.

Conjugate Gradient Descent

Assuming an n-dimensional quadratic
CONJUGATE GRADIENT DESCENT EXAMPLE

function

s e

e Balance between gradient descent and « Quadratic function: f(x) = I xTAx + bTx + ¢
Newton’s method (second-order method) 2
Directions d; & d; are mutually conjugate with A if:
o Steepest gradient descent is slow and zig- * P J conjug

zags in narrow valleys dl-TAdj =0Vi#j

e Newton’s Method is computationally
expensive (requires the inverse Hessian)

e The conjugate vectors form a basis of A.

e Min can be found in n steps with CG.

ogonal conjugate
gradient

steepest
descent

oth
e — SRS

IMAGE SOURCE [7]

Conjugate Gradient Descent

ALGORITHM DERIVING Sy
1. First step: use steepest descent
dtAd,_, =0
Directiond; = —
@) iIrection d, 91 (_gk + ﬁk dk—l)TAdk—l =0
o Steepest descent step size a, _g};Adk_l + [)’kd};_lAdk_l =0

o Update position x, = x; + a;d;

2. Subsequent steps:

o Direction: d,, + Bi'dy_1

. Assuming an n-dimensional quadratic
Current Previous function

gradient search - =
direction

Conjugate Gradient Descent

NON-QUADRATIC FUNCTIONS

Smooth functions behave like quadratic
functions close to a local minimum.

Difficult to estimate/ approximate Hessian
in a local region.

Require “Hessian-less” approximations.

FLETCHER-REEVES UPDATE gy

919k
.Bk ="
Ik-19k-1

Assuming an
n-dimensional

POLAK-RIBIERE UPDATE 5, [RASURGEEEIEUE

function

_ 9:(gk — gr-0)
Ii-19k-1

f < max(f,0)

B

IMAGE SOURCE [7]

Momentum

Momentum remembers the previous update and computes the next update as a linear
combination of the current gradient and the previous update.

Gradient descent takes a long time to traverse surfaces which are almost flat > momentum
Il Rdelspeed up descent over flat surfacesh

Momentum also [giikileENERdat-Wile L elollale] c ffect associated with steepest gradient descent.

UPDATE EQUATIONS Without momentum

Velocity vector: v*+D « ppk) — g gl
e Inertia term: pv*)

e The gradient term: —a® g(® \LVi-l:h momentum

IMAGE SOURCE [4]

e [is the momentum decay coefficient
€ (0,1)

Momentum

Momentum remembers the previous update and computes the next update as a linear
combination of the current gradient and the previous update.

Gradient descent takes a long time to traverse surfaces which are almost flat > momentum
Il Rdelspeed up descent over flat surfacesh

Momentum also [giikileENERdat-Wile L elollale] c ffect associated with steepest gradient descent.

UPDATE EQUATIONS Without momentum

Velocity vector: v*+D « ppk) — g gl
Position vector: xk+1) « x(0) 4 pk+1)

Initialise v(®) as 0 — first step is vanilla With momentum

IMAGE SOURCE [4]

gradient descent.

ISSUE WITH
MOMENTUM

Momentum does
not slow down
sufficiently at the
minimum, resulting

in overshooting.

Nesterov Momentum

APPROACHING

THE MINIMUM
The gradient is in the same direction as
the velocity. The (fvr*)) and

the gradient term (—a™ g(®¥) work
together, increasing velocity.

Nesterov Momentum

ISSUE WITH
MOMENTUM
NEAR THE

Momentum does MINIMUM
not slow down The (Br*)) and the gradient
sufficiently at the term (—a(k)g(k)) oppose. Near the
_mi”imum’ res'ulting minimum, the gradient approaches 0, so
(AlovVSISAooTing: the inertia drives the velocity update.

This will push the parameters up the
other side of the slope, overshooting the

minimum.

Nesterov Momentum

SOLUTION UPDATE EQUATIONS WHY IT WORKS?

By “looking ahead”
you can see that
the slope starting
to flatten out/
increase, so reduce

e Modifies the Velocity vector:

momentum
(k+1) k) _ (k) (k) (k)
update by v « Bv a@vf(x® + grR)

“looking ahead”. Position vector: Look-ahead

gradient
2K+ x(K) 4 p(k+1)

velocity to prevent
overshooting the
minimum.

Uses the

projected Initialise v(® as 0 — first step is vanilla
gradient. gradient descent.

ADAPTIVE
METHODS

This section explores a family of
algorithms that adapt the learning
rate for each parameter
individually.

Adaptive Methods

PROBLEM WITH FIXED METHODS ADAPTIVE METHODS

x(k'l'l) «— x(k) — a(k)Vg(x(k)) x(k‘l'l) «— x(k) — a(k) @ Vg(x(k))

All parameters are affected Personalised learning rate
by the same learning rate. per parameter that adapts

“ . . ” . over training.
One-size-fits-all” solution. 9

: Faster convergence.
Steep valley: smaller learning

rate to prevent oscillations. More stable.

Plateau: large learning rate Larger computational cost.
to keep moving.

xK+D x(®) _ o) Vg(x(k)) e a: baseline learning rate

e c:small value to prevent division by O

PARAMETER LEAaRNING RATE o glg),j € {1, ..., k}: history of gradients for i
(k)
a; =

4
e+ s

th parameter (up to

most recent step k)

Intuition:
Sum of squares term will grow as training progresses, increasing
SUM OF SQUARES the denominator of ai(k), so the learning rate decreases over time.
k

N 2
NON z (g_(J)) Disadvantage:
l l Monotonically decreasing learning rate — sometimes premature

=t stopping.

RMSProp

Extends AdaGrad to prevent monotonically decreasing learning rates.

xk+D) () _ gl Vg(x(k))
e a:baseline learning rate

PARAMETER LEARNING RATE e e:small value to prevent division by O

a
a.(k) =

l
€+ /si(")

e y:decayrate €(0,1)

(k) (k—1) (k)2
® —|ys® D H1 -y) (g
SOUARED GRADIENTS si =\ (1-v(g")
(k) _ _ (k-1))% Add new
S £ +(1-v) (gi) \\9 information
Decay about the
. revious t
Moving average of P curren
squared gradients. squared gradient.

gradients.

RMSProp

Extends AdaGrad to prevent monotonically decreasing learning rates.

204D x(0) — g0 @ yg(xk)

ADVANTAGES
e Adaptive learning rate.
PARAMETER LEARNING RATE
*) a e Non-monotonically decreasing learning rates.
a; =
' et S(k) e Gives more weight to recent gradients than
\/ i

older gradients.

SQUARED GRADIENTS % DISADVANTAGES

2
k k—1 k
s® =y 1 @ -y) (o)
e Additional hyperparameter to tune, y.

Moving average of
squared gradients.

Extends AdaGrad to prevent monotonically decreasing learning rates.
Improves on RMSProp by not requiring a global learning rate, «.

3. ACCUMULATE PARAMETER

1. ACCUMULATE GRADIENTS UPDATES
2
Si(k) = Vsi(k_l) +(1 =) (ggk)) ui(k) = Vui(k_l) +(1-y) (Axi(k))z
2. CALCULATE PARAMETER
UPDATE 4. APPLY PARAMETER UPDATE
(k-1)

9i
e+ s

an appropriate scale for the updates.
u§0) _ S§0) -0 Self-adjusting per-parameter rate: no need for global
l

! alpha value.

The moving average of parameter updates ui(k) learns

Initialising the gradient and squared gradient to zero introduces a

Momentum-

») —
component L

Squared
gradients from
RMSProp

(k)
Xi

bias. A bias correction step alleviates this issue.

k— k
pv Y+ (1 - p)g®

L

2
k k-1
$ = ys D 4 (1 -) (g)

o0

i T 1 pk

(k)
NON.
i 1—)/k

Bias correction
~(k)

(k-1) _ 4

i

X a

€+ /§i(k)

Biased decaying momentum/ First moment
moving average of gradient. | of gradient

Biased decaying squared
gradients/ moving average of
squared gradient.

‘Seco’nd
moment of
gradient

Corrected decaying momentum

Corrected decaying squared gradients

Parameter update

£0am

Biased decaying momentum/

v = pr*V + (1 - p)g® moving average of gradient.
®) _ (k=1))\ 2 Biased decaying squared
s; o =vsy T H(A=v) (gi) gradients/ moving average of
___ squared gradient.
y =0.999,p = 0.9 L
— 91'() = N —lpk Corrected decaying momentum
0
s“i(k) =7 — Corrected decaying squared gradients
4
. 9§k)
20 = D g — Parameter update

Adam: Bias correction

(k) = pv; D 4 (1 p)g(k) Moving average of gradient
v = (1-)Z k=j g Equivalent expression
Take the P PG 9 P
expectation (Almost) stationary expectation of
on both W (k) . gradient
sides E (vi) - p) Z pI + 65 k
E(v®)=1-p) Zp"‘j E(g”)
k k 0 ®Y \, ;
E(v®) = E(g®) (1-p¥) + 0 E(g?) = E(gl:)v]e{1;wk}
(k) _ k) _j
£ (v) (1) =2 () 0-p) ot
E(g®) =t =
(=09

Finite geometric series
(k) -

9i(k)=1v_i—pk ZP’”—Z =

k 4
“(=p)) Pk = (1= ph)
j=1

SOURCE [5]

ENHANCING FIRS
ORDER METHODS

Hypergradient descent

Dynamically update the global learning rate associated with gradient descent methods.

Algorithm 2 SGD with Nesterov (SGDN)

Algorithm 5 SGDN with hyp. desc. (SGDN-HD)

Require: p: momentum
t,vg < 0,0 > Initialization
Update rule:

Vi — HU—1 + gt > “Velocity”

ur — falgr + pve) > Parameter update

Require: p: momentum

t,vo, Vaug < 0,0,0 > Initialization
Update rule:

Vi — LUr—1 + gt > “Velocity™
we — —tay (gr + pve) > Parameter update
v:ru(‘, — —gt — KUt

Algorithm 3 Adam

Algorithm 6 Adam with hyp. desc. (Adam-HD)

Require: 31, 32 € [0, 1): decay rates for Adam
t,mg,vg +— 0,0,0 > Initialization
Update rule:

me < Brme—1 4+ (1 — B1) ge > 1st mom. estimate
vy — Bavi—1 + (1 — B2) gf > 2nd mom. estimate
iy + my /(1 — B]) > Bias correction
U — v /(1 — 5;) > Bias correction
up + Layng/ (Vo + €) > Parameter update

Require: 31, 82 € [0, 1): decay rates for Adam

t,mo,vo, Vaup < 0,0,0,0 > Initialization
Update rule:

my < Brmi—1+ (1L — B1) gs > 1st mom. estimate
vy +— Bovi—1 + (1 — B2) g? > 2nd mom. estimate
My < my /(1 — B7) > Bias correction
Uy < v /(1 — B3) > Bias correction
ug +— ~Fay e /(W + €) > Parameter update
Vaus +— —mys/(VVs + €)

SOURCE [6]

Hypergradient descent

Dynamically update the global learning rate associated with gradient descent methods.

WHAT IS A
PROBLEM HYPERGRADIENT? SOLUTION WHY IT WORKS?

Gradient The derivative Apply gradient Hypergradient
descent with respect to descent to the algorithms
methods are a hyperparameter reduce

often quite hyperparameter (global LR) of an sensitivity to

sensitive to the (such as the underlying the

choice of global global learning descent hyperparameter,
learning rate/ rate). method. allowing it to
step length. adapt faster.

Hypergradient descent

Dynamically update the global learning rate associated with gradient descent methods.

Basic gradient descent
update

Derivative of the objective
function w.r.t. the hyperparameter

(requires storing an extra copy of
the gradient)

Hyperparameter update equation

gk—1))

x () e D aVg (xl

L l

axl(k_l)

e =) o

(0 —ama (59

(k)

0x;

(k) (k-1) _ i
a\"V « «a '8—60(

a® — k-1 4 BVg (xi(k—l)) Vg (xgk—z))

Hyperparameter
learning rate

LINKS AND RESOURCES

[0] Gad, A. F. (2019). Implementing Gradient Descent in Python, Part 3: Adding a Hidden Layer. DigitalOcean.
https://blog.paperspace.com/part-3-generic-python-implementation-of-gradient-descent-for-nn-
optimization/

[1] Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for Optimization. MIT Press.
https://algorithmsbook.com/optimization/files/optimization.pdf

[2] Watt, J., Borhani, R., & Katsaggelos, A. K. (2020). Machine learning refined: Foundations, algorithms, and
applications. Cambridge University Press. https://www.r-5.org/files/books/computers/algo-
list/statistics/data-mining/Jeremy Watt-Machine Learning Refined-EN.pdf

[8] Gundersen, G. (2022) Conjugate Gradient Descent.
https://gregorygundersen.com/blog/2022/03/20/conjugate-gradient-descent/

[4] Watt, J., Borhani, R. (2025) 13.4 Momentum methods.

https://kenndanielso.github.io/mlrefined/blog posts/13 Multilayer perceptrons/18 4 Momentum metho
ds.html

[5] Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[6] Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M., & Wood, F. (2017). Online learning rate
adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782.

[7] Greenshields, C., Weller, H. (2022). Conjugate gradient method. https://doc.cfd.direct/notes/cfd-
general-principles/conjugate-gradient-method

(ofe]qif-TeylC.durr @lancaster.ac.uk

