
FIRST ORDER 
OPTIMISATION 
METHODS
CASSANDRA DURR
15 OCTOBER 2025
Lancaster AI (LAI)

IMAGE SOURCE [0]



SOURCES Chapter 2 & 8
Source [2] in references

Chapter 5
Source [1] in references



Gradient Descent
First-order methods are algorithms that use the first derivative (i.e. gradient) to direct the 
optimisation procedure/ search towards a local minimum.

IMAGE SOURCE [2]

Update equation:
𝒘(𝑘+1) ← 𝒘(𝑘) − 𝛼𝑘∇𝑔 𝒘 𝑘

The step size/ learning 
rate associated with 
the kth descent step.

Stopping criteria: The gradient ∇𝑔 𝒘𝑘

becomes sufficiently close to 0.

Linear model of 𝑔(𝒘) = the first-order Taylor Series approximation: ℎ 𝒘 = 𝑔 𝒘0 + ∇𝑔 𝒘0 𝑇 𝒘 − 𝒘0



Reveal something 
surprising about 
yourself, like a unique 
skill or obscure 
personal trivia. 
Remember: 
one of these has to 
be a lie! 

Reveal something 
surprising about 
yourself, like a unique 
skill or obscure 
personal trivia. 
Remember: 
one of these has to 
be a lie! 

Reveal something 
surprising about 
yourself, like a unique 
skill or obscure 
personal trivia. 
Remember: 
one of these has to 
be a lie! 

Gradient Descent: The Pitfalls

Gradient descent can 
result in zig-zagging in 
narrow valleys or troughs 
SOURCE [1]

Too large a step length may result in overshooting 
the minimum.
SOURCE [2]

OVERSHOOTING ZIG-ZAGGING



Gradient Descent: Zig-Zagging

1. Gradient descent provides the direction. 
2. Isolate the hyperplane cutting through the function along 

the selected direction. 
3. The intersection of the original function and the 

hyperplane is a parabola. 
4. The minimum of the parabola indicates the optimal step 

length.

Step size/ learning rate 
is optimally selected to 
produce the largest 
gain along the 
negative gradient 
direction.

STEEPEST GRADIENT 
DESCENT

Gradient descent tells you 
which direction to go in, 
but not how far to go. 

IMAGE SOURCE [3]



Gradient Descent: Zig-Zagging

However, steepest 
gradient descent can 
result in zig-zagging in 
narrow valleys or troughs. 

Step size/ learning rate 
is optimally selected to 
produce the largest 
gain along the 
negative gradient 
direction.

STEEPEST GRADIENT 
DESCENT

Gradient descent tells you 
which direction to go in, 
but not how far to go. 

The steps resulting from 
steepest gradient 
descent are orthogonal.

If you took a step that 
was not orthogonal to 
your last step, it would 
mean that there is some 
shared direction between 
your last and next step. 
This implies you should 
have gone further in your 
previous step.

The resulting zig-zagging 
is not the most efficient 
search through the 
space.

IMAGE SOURCE [3]



IMPROVING 
GRADIENT DESCENT

Conjugate Gradient

Momentum

Nesterov 
Momentum

This section covers methods 
designed to overcome the 
limitations of vanilla gradient 
descent by incorporating memory
of past steps.



CONJUGATE GRADIENT DESCENT

Conjugate Gradient Descent
Assuming an n-dimensional quadratic

function

● Balance between gradient descent and 
Newton’s method (second-order method)

● Steepest gradient descent is slow and zig-
zags in narrow valleys

● Newton’s Method is computationally 
expensive (requires the inverse Hessian)

● Quadratic function: 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙+ 𝒃𝑇𝒙 + 𝑐

● Directions 𝑑𝑖 & 𝑑𝑗 are mutually conjugate with A if: 

𝒅𝑖
𝑇𝐴𝒅𝑗 = 0 ∀ 𝑖 ≠ 𝑗

● The conjugate vectors form a basis of A.

● Min can be found in 𝑛 steps with CG.

EXAMPLE

IMAGE SOURCE [7]



ALGORITHM

Conjugate Gradient Descent

Assuming an n-dimensional quadratic
function

1. First step: use steepest descent

○ Direction 𝒅1 = −𝒈1

○ Steepest descent step size 𝛼1

○ Update position 𝒙2 = 𝒙1 + 𝛼1𝒅1

2. Subsequent steps: 

○ Direction: 𝒅𝑘 = −𝒈𝑘 + 𝛽𝑘 𝒅𝑘−1

Current 
gradient

Previous 
search 
direction

𝒅𝑘
𝑇𝐴𝒅𝑘−1 = 𝟎

−𝒈𝑘 + 𝛽𝑘 𝒅𝑘−1
𝑇𝐴𝒅𝑘−1 = 𝟎

−𝒈𝑘
𝑇𝐴𝒅𝑘−1 + 𝛽𝑘𝒅𝑘−1

𝑇 𝐴𝒅𝑘−1 = 𝟎

𝛽𝑘 =
𝒈𝑘
𝑇𝐴𝒅𝑘−1

𝒅𝑘−1
𝑇 𝐴𝒅𝑘−1

DERIVING 𝛽𝑘



NON-QUADRATIC FUNCTIONS

Conjugate Gradient Descent

Assuming an 
n-dimensional 
non- quadratic

function

● Smooth functions behave like quadratic 
functions close to a local minimum.

● Difficult to estimate/ approximate Hessian 
in a local region.

● Require “Hessian-less” approximations. 

𝛽𝑘 =
𝒈𝑘
𝑇𝒈𝑘

𝒈𝑘−1
𝑇 𝒈𝑘−1

FLETCHER-REEVES UPDATE 𝛽𝑘

POLAK-RIBIERE UPDATE 𝛽𝑘

𝛽𝑘 =
𝒈𝑘
𝑇 𝒈𝑘 − 𝒈𝑘−1

𝒈𝑘−1
𝑇 𝒈𝑘−1

𝛽 ← max 𝛽, 0

IMAGE SOURCE [7]



Velocity vector: 𝒗(𝑘+1) ← 𝛽𝒗(𝑘) − 𝛼 𝑘 𝒈 𝑘

● Inertia term: 𝛽𝒗(𝑘)

● The gradient term: −𝛼 𝑘 𝒈 𝑘

● 𝛽 is the momentum decay coefficient 
𝜖 0,1

UPDATE EQUATIONS

Momentum
Momentum remembers the previous update and computes the next update as a linear 
combination of the current gradient and the previous update. 

Gradient descent takes a long time to traverse surfaces which are almost flat → momentum 
helps to speed up descent over flat surfaces. 

Momentum also mitigates the zig-zagging effect associated with steepest gradient descent.

Without momentum

With momentum

IMAGE SOURCE [4]



Velocity vector: 𝒗(𝑘+1) ← 𝛽𝒗(𝑘) − 𝛼 𝑘 𝒈 𝑘

Position vector: 𝒙(𝑘+1) ← 𝒙(𝑘) + 𝒗(𝑘+1)

Initialise 𝒗(0) as 𝟎 → first step is vanilla 
gradient descent.

UPDATE EQUATIONS

Momentum
Momentum remembers the previous update and computes the next update as a linear 
combination of the current gradient and the previous update. 

Gradient descent takes a long time to traverse surfaces which are almost flat → momentum 
helps to speed up descent over flat surfaces. 

Momentum also mitigates the zig-zagging effect associated with steepest gradient descent.

Without momentum

With momentum

IMAGE SOURCE [4]



Momentum does 
not slow down 
sufficiently at the 
minimum, resulting 
in overshooting.

ISSUE WITH 
MOMENTUM

Nesterov Momentum

The gradient is in the same direction as 
the velocity. The inertia term (𝛽𝒗(𝑘)) and 
the gradient term (−𝛼 𝑘 𝒈 𝑘 ) work 
together, increasing velocity. 

APPROACHING 
THE MINIMUM



Momentum does 
not slow down 
sufficiently at the 
minimum, resulting 
in overshooting.

ISSUE WITH 
MOMENTUM

Nesterov Momentum

The inertia term (𝛽𝒗(𝑘)) and the gradient 
term (−𝛼 𝑘 𝒈 𝑘 ) oppose. Near the 
minimum, the gradient approaches 0, so 
the inertia drives the velocity update. 
This will push the parameters up the 
other side of the slope, overshooting the 
minimum.

NEAR THE 
MINIMUM



● Modifies the 
momentum 
update by 
“looking ahead”.

● Uses the 
projected 
gradient.

SOLUTION

Nesterov Momentum

UPDATE EQUATIONS

Velocity vector: 

𝒗(𝑘+1) ← 𝛽𝒗(𝑘) − 𝛼 𝑘 ∇𝑓 𝒙 𝑘 + 𝛽𝒗 𝑘

Position vector: 

𝒙(𝑘+1) ← 𝒙(𝑘) + 𝒗(𝑘+1)

Initialise 𝒗(0) as 𝟎 → first step is vanilla 
gradient descent.

Look-ahead 

gradient

By “looking ahead” 
you can see that 
the slope starting 
to flatten out/ 
increase, so reduce 
velocity to prevent 
overshooting the 
minimum.

WHY IT WORKS?



ADAPTIVE 
METHODS

AdaGrad

RMSProp

Adadelta

Adam

This section explores a family of 
algorithms that adapt the learning 
rate for each parameter 
individually.



● All parameters are affected 
by the same learning rate.

● “One-size-fits-all” solution.

● Steep valley: smaller learning 
rate to prevent oscillations.

● Plateau: large learning rate 
to keep moving.

PROBLEM WITH FIXED METHODS 

Adaptive Methods

𝒙(𝑘+1) ← 𝒙(𝑘) − 𝛼(𝑘)∇𝑔 𝒙 𝑘

ADAPTIVE METHODS

𝒙(𝑘+1) ← 𝒙(𝑘) − 𝜶(𝑘) ⊙ ∇𝑔 𝒙 𝑘

● Personalised learning rate 
per parameter that adapts 
over training.

● Faster convergence.

● More stable.

● Larger computational cost.



● 𝛼: baseline learning rate

● 𝜖: small value to prevent division by 0

● 𝑔𝑖
𝑗
, j ∈ 1,… , 𝑘 : history of gradients for 𝑖th parameter (up to 

most recent step 𝑘)

AdaGrad

𝒙(𝑘+1) ← 𝒙(𝑘) − 𝜶(𝑘) ⊙ ∇𝑔 𝒙 𝑘

𝛼𝑖
(𝑘)

=
𝛼

𝜖 + 𝑠𝑖
(𝑘)

𝑠𝑖
(𝑘)

= ෍

𝑗=1

𝑘

𝑔𝑖
𝑗

2

PARAMETER LEARNING RATE

SUM OF SQUARES

Intuition: 
Sum of squares term will grow as training progresses, increasing 
the denominator of 𝛼𝑖

(𝑘), so the learning rate decreases over time.

Disadvantage:
Monotonically decreasing learning rate → sometimes premature 
stopping.



RMSProp
Extends AdaGrad to prevent monotonically decreasing learning rates.

𝒙(𝑘+1) ← 𝒙(𝑘) − 𝜶(𝑘) ⊙ ∇𝑔 𝒙 𝑘

𝛼𝑖
(𝑘)

=
𝛼

𝜖 + 𝑠𝑖
(𝑘)

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

PARAMETER LEARNING RATE

SQUARED GRADIENTS

Moving average of 
squared gradients.

● 𝛼: baseline learning rate

● 𝜖: small value to prevent division by 0

● 𝛾: decay rate 𝜖 0, 1

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

Decay 
previous 
squared 
gradients.

Add new 
information 
about the 
current 
gradient.



RMSProp
Extends AdaGrad to prevent monotonically decreasing learning rates.

𝒙(𝑘+1) ← 𝒙(𝑘) − 𝜶(𝑘) ⊙ ∇𝑔 𝒙 𝑘

𝛼𝑖
(𝑘)

=
𝛼

𝜖 + 𝑠𝑖
(𝑘)

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

PARAMETER LEARNING RATE

SQUARED GRADIENTS

Moving average of 
squared gradients.

● Adaptive learning rate.

● Non-monotonically decreasing learning rates.

● Gives more weight to recent gradients than 
older gradients.

ADVANTAGES

DISADVANTAGES

● Additional hyperparameter to tune, 𝛾.



Adadelta
Extends AdaGrad to prevent monotonically decreasing learning rates.

Improves on RMSProp by not requiring a global learning rate, 𝛼.

1. ACCUMULATE GRADIENTS 

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

𝑢𝑖
(𝑘)

= 𝛾𝑢𝑖
(𝑘−1)

+ 1 − 𝛾 ∆𝑥𝑖
(𝑘) 2

2. CALCULATE PARAMETER 
UPDATE

∆𝑥𝑖
(𝑘)

= −
𝜖 + 𝑢𝑖

(𝑘−1)

𝜖 + 𝑠𝑖
(𝑘)

𝑔𝑖
𝑘

3. ACCUMULATE PARAMETER 
UPDATES 

4. APPLY PARAMETER UPDATE 

𝑥𝑖
(𝑘)

= 𝑥𝑖
(𝑘−1)

+ ∆𝑥𝑖
(𝑘)

𝑢𝑖
(0)

= 𝑠𝑖
(0)

= 0

The moving average of parameter updates 𝑢𝑖
(𝑘) learns 

an appropriate scale for the updates. 
Self-adjusting per-parameter rate: no need for global 
alpha value.



Adam

𝑣𝑖
(𝑘)

= 𝜌𝑣𝑖
(𝑘−1)

+ 1 − 𝜌 𝑔𝑖
(𝑘)

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

ො𝑣𝑖
(𝑘)

=
𝑣𝑖

𝑘

1 − 𝜌𝑘

Ƹ𝑠𝑖
(𝑘)

=
𝑠𝑖
(𝑘)

1 − 𝛾𝑘

𝑥𝑖
(𝑘)

= 𝑥𝑖
(𝑘−1)

− 𝛼
ො𝑣𝑖
𝑘

𝜖 + Ƹ𝑠𝑖
𝑘

Biased decaying momentum/ 
moving average of gradient.

Biased decaying squared 
gradients/ moving average of 
squared gradient. 

Corrected decaying momentum

Corrected decaying squared gradients

Parameter update

Initialising the gradient and squared gradient to zero introduces a 
bias. A bias correction step alleviates this issue.

Momentum-

component

Squared 

gradients from 

RMSProp

Second 

moment of 

gradient

First moment 

of gradient

Bias correction



Adam

Corrected decaying momentum

Corrected decaying squared gradients

Parameter update

𝛼 = 0.001, 𝜖 = 10−8

𝛾 = 0.999, 𝜌 = 0.9

Recommended hyperparameters

Biased decaying momentum/ 
moving average of gradient.

Biased decaying squared 
gradients/ moving average of 
squared gradient. 

𝑣𝑖
(𝑘)

= 𝜌𝑣𝑖
(𝑘−1)

+ 1 − 𝜌 𝑔𝑖
(𝑘)

𝑠𝑖
(𝑘)

= 𝛾𝑠𝑖
(𝑘−1)

+ 1 − 𝛾 𝑔𝑖
𝑘

2

ො𝑣𝑖
(𝑘)

=
𝑣𝑖

𝑘

1 − 𝜌𝑘

Ƹ𝑠𝑖
(𝑘)

=
𝑠𝑖
(𝑘)

1 − 𝛾𝑘

𝑥𝑖
(𝑘)

= 𝑥𝑖
(𝑘−1)

− 𝛼
ො𝑣𝑖
𝑘

𝜖 + Ƹ𝑠𝑖
𝑘



Adam: Bias correction
𝑣𝑖
(𝑘)

= 𝜌𝑣𝑖
(𝑘−1)

+ 1 − 𝜌 𝑔𝑖
(𝑘)

𝑣𝑖
(𝑘)

= 1 − 𝜌 ෍

𝑗=1

𝑘

𝜌𝑘−𝑗 𝑔𝑖
(𝑗)

𝐸 𝑣𝑖
(𝑘)

= 𝐸 𝑔𝑖
𝑘

1 − 𝜌 ෍

𝑗=1

𝑘

𝜌𝑘−𝑗 + 𝛿

𝐸 𝑣𝑖
(𝑘)

= 𝐸 𝑔𝑖
𝑘

1 − 𝜌𝑘 + 𝛿

𝐸 𝑔𝑖
𝑘

≅
𝐸 𝑣𝑖

𝑘

1 − 𝜌𝑘

ො𝑣𝑖
(𝑘)

=
𝑣𝑖

𝑘

1 − 𝜌𝑘

Moving average of gradient

Equivalent expression

෍

𝑗=1

𝑘

𝜌𝑘−𝑗 = ෍

𝑗=0

𝑘−1

𝜌𝑘 =
1− 𝜌𝑘

1 − 𝜌
∴ 1 − 𝜌 ෍

𝑗=1

𝑘

𝜌𝑘−𝑗 = (1 − 𝜌𝑘)

Finite geometric series

(Almost) stationary expectation of 
gradient

𝐸 𝑣𝑖
𝑘 = 1− 𝜌 ෍

𝑗=1

𝑘

𝜌𝑘−𝑗 𝐸 𝑔𝑖
𝑗

𝐸 𝑔𝑖
(𝑗)

= 𝐸 𝑔𝑖
𝑘 ∀ 𝑗 ∈ {1,… , 𝑘}

𝐸 𝑣𝑖
𝑘 = 𝐸 𝑔𝑖

𝑘 1 − 𝜌 ෍

𝑗=1

𝑘

𝜌𝑘−𝑗

Take the 
expectation 
on both 
sides

SOURCE [5]



ENHANCING FIRST 
ORDER METHODS

Hypergradient 
descent

This section explores 
enhancements to first order 
methods.



Hypergradient descent
Dynamically update the global learning rate associated with gradient descent methods.

SOURCE [6]



Hypergradient descent
Dynamically update the global learning rate associated with gradient descent methods.

PROBLEM

Gradient 
descent 
methods are 
often quite 
sensitive to the 
choice of global 
learning rate/ 
step length.

WHAT IS A 
HYPERGRADIENT?

The derivative 
with respect to 
a 
hyperparameter 
(such as the 
global learning 
rate).

WHY IT WORKS?
Apply gradient 
descent to the 
hyperparameter 
(global LR) of an 
underlying 
descent 
method. 

Hypergradient 
algorithms 
reduce 
sensitivity to 
the 
hyperparameter, 
allowing it to 
adapt faster.

SOLUTION



Hypergradient descent
Dynamically update the global learning rate associated with gradient descent methods.

𝑥𝑖
(𝑘)

← 𝑥𝑖
(𝑘−1)

− 𝛼∇𝑔 𝑥𝑖
𝑘−1

𝜕𝑔 𝑥𝑖
(𝑘−1)

𝜕𝛼
= ∇𝑔 𝑥𝑖

𝑘−1
∙
𝜕𝑥𝑖

𝑘−1

𝜕𝛼

= ∇𝑔 𝑥𝑖
𝑘−1

∙
𝜕

𝜕𝛼
𝑥𝑖

𝑘−2
− 𝛼∇𝑔 𝑥𝑖

𝑘−2

= ∇𝑔 𝑥𝑖
𝑘−1

∙ −∇𝑔 𝑥𝑖
𝑘−2

𝛼(𝑘) ← 𝛼(𝑘−1) − 𝛽
𝜕𝑥𝑖

𝑘

𝜕𝛼

𝛼(𝑘) ← 𝛼(𝑘−1) + 𝛽∇𝑔 𝑥𝑖
𝑘−1

∙ ∇𝑔 𝑥𝑖
𝑘−2

Basic gradient descent 
update

Derivative of the objective 
function w.r.t. the hyperparameter

(requires storing an extra copy of 
the gradient)

Hyperparameter update equation

Hyperparameter 
learning rate



LINKS AND RESOURCES

[0] Gad, A. F. (2019). Implementing Gradient Descent in Python, Part 3: Adding a Hidden Layer. DigitalOcean. 
https://blog.paperspace.com/part-3-generic-python-implementation-of-gradient-descent-for-nn-
optimization/
[1] Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for Optimization. MIT Press. 
https://algorithmsbook.com/optimization/files/optimization.pdf
[2] Watt, J., Borhani, R., & Katsaggelos, A. K. (2020). Machine learning refined: Foundations, algorithms, and 
applications. Cambridge University Press. https://www.r-5.org/files/books/computers/algo-
list/statistics/data-mining/Jeremy_Watt-Machine_Learning_Refined-EN.pdf
[3] Gundersen, G. (2022) Conjugate Gradient Descent. 
https://gregorygundersen.com/blog/2022/03/20/conjugate-gradient-descent/
[4] Watt, J., Borhani, R. (2025) 13.4 Momentum methods.
https://kenndanielso.github.io/mlrefined/blog_posts/13_Multilayer_perceptrons/13_4_Momentum_metho
ds.html
[5] Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[6] Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M., & Wood, F. (2017). Online learning rate 
adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782.
[7] Greenshields, C., Weller, H. (2022). Conjugate gradient method. https://doc.cfd.direct/notes/cfd-
general-principles/conjugate-gradient-method



THANK
YOU!

Contact: c.durr@lancaster.ac.uk


