Backpropagation

Error is sent back to
each neuron in backward

Gradient of error is direction
calculated with respect to
each weight
Outputs Error - difference
N — ? ——+ Error— betweenpredicted
Predicted output and actual
output output
InputLayer Hidden Layer Output Layer

Based on chapter 2 of the book Algorithms for

Optimization by Mykel J. Kochenderfer Tim A. Wheeler

Lancaster E=3
University ©

3 Prob_AT

Introduction to
Optimisation for ML

Derivatives and Gradients

Andreas Makris, 2"9 year PhD student
Lancaster University, ProbAl Hub

https://www.linkedin.com/pulse/understanding-backpropagation-deep-learning-indeera-weerasinghe-2b6pc 1

What is optimization?

* We have a function f that depends on
some input x. We want to find x that

minimizes f subject to some N
constrain. Mathematically:

minimize f(x)
X

]

subjectto xe& A&

Why do we need optimization in ML?

* The function is the loss function J. The
input are the parameters of the model
6.

GRADIENT DESCENT ALGORITHM

LOSS FUNCTION

Initial value ~I
Gradient

Minimum

6:=0—aVJ(0)
——> parameter

a —> |earning rate
VJ(6) —— gradient of cost function

Why do we

The function is the loss function J. The
input are the parameters of the model
6.

We want to find the parameters of the
model that minimize the loss function.

need optimization in ML?

6

GRADIENT DESCENT ALGORITHM

I LOSS FUNCTION
Initial value —
Gradient

Minimum

=60 —aVJ(6)
——> parameter

a —> |earning rate
VJ(6) —— gradient of cost function

Why do we need optimization in ML?

The function is the loss function J. The
input are the parameters of the model
6.
We want to find the parameters of the
model that minimize the loss function.
There are a lot of optimization
algorithms that use the gradient of the
function with respect to the input (e.g.
gradient descent, ADAM).
Today we will focus on how to
calculate the gradient of the loss with
respect to the parameters of the
model.

d]

a0

GRADIENT DESCENT ALGORITHM

LOSS FUNCTION

Initial value ~I
Gradient

Minimum

6:=0—aVJ(0)
——> parameter

a —> |earning rate
VJ(6) —— gradient of cost function

Automatic Differentiation

* Two types (modes) of autodiff; forward o
mode and reverse mode f(ﬂ, b) _ ll‘l(ﬂb T max(a,Z))
(backpropagation).
b

F e
Q)&} ~@-

c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Automatic Differentiation

* Two types (modes) of autodiff; forward o
mode and reverse mode f(ﬂ, b) _ ll‘l(ﬂb T max(a,Z))

(backpropagation).
« Can be used when a function can be
expressed as a computation graph

with all elementary functions being 1
differentiable.
a C3 —>@—> C4

c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Automatic Differentiation

* Two types (modes) of autodiff; forward
mode and reverse mode
(backpropagation).

« Can be used when a function can be

f(a,b) =In(ab+ max(a,2))

« Start by building the computation a
graph; inputs on the left, operations
are nodes, introduce intermediate @ ©2
variables, outputs on the right.

expressed as a computation graph
with all elementary functions being pcl
differentiable.

c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Automatic Differentiation

* Two types (modes) of autodiff; forward
mode and reverse mode
(backpropagation).

« Can be used when a function can be

f(a,b) =In(ab+ max(a,2))

« Start by building the computation a
graph; inputs on the left, operations
are nodes, introduce intermediate @ ©2
variables, outputs on the right.

* Both modes are based on the chain
rule.

expressed as a computation graph
with all elementary functions being pcl
differentiable.

* Qurgoalisto calculate ot (and ﬁ).

da db c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Automatic Differentiation

* Forward mode: Calculate in order %, f(a, b) — ll‘l(ﬂb + max(ﬁ; 2))
dc, dcz Of
da’ da’ da
b

F e
Q)&} ~@-

c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Automatic Differentiation

f(a,b) =In(ab+ max(a,2))

. ac
* Forward mode: Calculate in order a_al’
aCZ 6C3 af

da’ da’ da
of
b

e Reverse mode: Calculate in order Py
3
of of of
dc,’ dcq’ da C1

c, = In(c3) =1In(c; + ¢;) = In(ab + max(a,2)) c3 = ¢, + ¢,

Automatic Differentiation

° . 1 %
Forward mode: Calculate in order Py f(ﬂ; b) — ll‘l(ﬂb 1 max(a,Z))
9cy 0cs Of
oa’ da’ da 3
* Reverse mode: Calculate in order %, b
3
of of of
dc,’ dcq’ da C1
* When the input dimensionality is a)3; €3 —’@—’ C4
higher than the output dimensionality -
reverse mode is cheaper. .

* When the input dimensionality is lower
than the output dimensionality forward

mode is cheaper.
c, = In(c3) = In(ab + max(a,2)) c3 = c; + ¢, = ab + me

Forward Mode

e Let a=3 and b=2. Use the forward
mode autodiff to find %.

f(a,b) =In(ab+ max(a,2))

C3 ﬂ@—» Cq
e : 2
c» = max(a,2) =3

Forward Mode

e Let a=3 and b=2. Use the forward
mode autodiff to find %.

f(a,b) =In(ab+ max(a,2))

e For each node calculate both the value
and partial derivative with respect to a. b=2 —axb=6

 Example use of chain rule;
6C3 _ 6C3 acl_L 6C3 662 -
da dcq Oa ' dc, Oa ‘

2

c, =max(a,2)c; = ab

c, = In(c3) =In(c; + ¢;) = In(ab + max(a,2)) c3 = ¢, +

» Start by a forward pass to calculate the
values (only).
* Do areverse pass for the gradients.

f(x) = \/,1:'2 + exp(x?) + cos (z° + exp(z?))

9f _0fdd Of oe
9c — 9ddc T de de
b — dc b
of Ofdb Of dc
9a _ 9bda " 9cda
df 8fda

ox da Or

* This is what neural networks use to
calculate the gradients.

e Start by a forward pass to calculate the
values.
* Do areverse pass for the gradients.

f(x) = \/,1:'2 + exp(x?) + cos (z° + exp(z?))

9f _0fdd Of oe
9c — 9ddc T de de
b — dc b
of Ofdb Of dc
9a _ 9bda " 9cda
df 8fda

ox da Or

e This is what neural networks use to What if f cannot be expressed as a computational graph
calculate the gradients. with differentiable functions?

Numerical Differentiation

 Estimate derivatives numerically (not

exactll). ey o S A /)~ fe—h/D) f) = Flx =)
 Finite difference methods; use the N fl, s\ fl, /N fi .
forward difference central difference backward difference

definition of differentiation and plug in a
small value of h.

 Forward difference 0O(h) but central
difference 0(h?).

e If histoo small, we might face numerical
subtractive cancellation issues.

Numerical Differentiation

 Estimate derivatives numerically (not

exact!).) R SO Zf) | fa) — fa—h/2))~ flx =)
* Finite difference methods; use the N fl, /N fl, /N fi .

forward difference central difference backward difference

definition of differentiation and plug in a
small value of h.

 Forward difference 0O(h) but central
difference 0(h?).

e If histoo small, we might face numerical
subtractive cancellation issues.

e Complex step method;

, Im(f (x + in))
 No subtractive cancellation issues.

0(h?).
* All proofs with Taylor series.

Numerical Differentiation

 Estimate derivatives numerically (not

exact!l). MO () b {5 O { G 72 R Gt T3 DO 1 e)
 Finite difference methods; use the N -~ ;N -~ s\ - .
deﬁnition Of differentiatiOn and plug in a forward difference central difference backward difference
small value of h.
 Forward difference 0O(h) but central
difference 0(h?). These methods do not scale well with the number of parameters.

e If histoo small, we might face numerical
subtractive cancellation issues.
e Complex step method;

, Im(f (x + in))
 No subtractive cancellation issues.

0(h?).
* All proofs with Taylor series.

Regression Gradient

« Used for problems with noisy objective (Ax(l),f(er Ax(l))),(Ax(z),f(erAx(Q))),,,,,(Ax(m),f(erAx('”)))
functions because the regression helps
smooth out the noise when producing a n T
gradient estimate. f(x -+ Ax) = f(x) + g AX
* Need a dataset of perturbations and their
function evaluations.
* Usefirst-order Taylor expansion. _
. . . . (1T
 Find gusing linear regression. (Ax')

AX =

g = AXTAf ()T
A = [flxct axM) = F(x), ., flx+ ax™) = f(x)]

Directional Derivatives

« “The directional derivative V.f(x) of a V.60 = lim fOcths) —f(x) _ . fOcths/2) — f(x—hs/2) _ . f(x) = f(x—hs)
multivariate function f is the instantaneous P o h 0 h 0 I
rate of change of f(x) as x is moved with forward difference central difference backward difference
velocity s.”

* We can calculate the directional derivative
using the following formula.

Vsf(x) = Vf(x)'s

* The directional derivative is a scalar (when
the function output is scalar)!

* The directional derivative is highest in the
gradient direction and lowest in the
opposite direction of the gradient.

Simultaneous Perturbation Stochastic Gradient Approximation (SPSA)

* SPSA can estimate the gradient with as few
as two function evaluations, regardless of
the number of variables. Can work in deep
learning.

Uses directional derivatives.

sz(x)

f(x+6z) — f(x — oz)
20

s
st

Q

Vf(x) = (Vaf(x))z

Simultaneous Perturbation Stochastic Gradient Approximation (SPSA)

 SPSA can estimate the gradient with as few
as two function evaluations, regardless of sz(x) ~ f(x + fSZ) o f(x — 52)
the number of variables. Can work in deep 20
learning.
* Usesdirectional derivatives.
« z~N(O,I). Viix)~ (Vzf(x))z
* Average many samples to improve the
estimate.

* “The sample count is typically left quite
small or even setto 1”.

Thank you for
listening!
Questions?

Lancaster E==
University # * @’H}rob_AI

Stable Diffusion 3 (uses Flow model)

	Slide 1: Introduction to Optimisation for ML Derivatives and Gradients
	Slide 2: What is optimization?
	Slide 3: Why do we need optimization in ML?
	Slide 4: Why do we need optimization in ML?
	Slide 5: Why do we need optimization in ML?
	Slide 6: Automatic Differentiation
	Slide 7: Automatic Differentiation
	Slide 8: Automatic Differentiation
	Slide 9: Automatic Differentiation
	Slide 10: Automatic Differentiation
	Slide 11: Automatic Differentiation
	Slide 12: Automatic Differentiation
	Slide 13: Forward Mode
	Slide 14: Forward Mode
	Slide 15: Reverse Mode
	Slide 16: Reverse Mode
	Slide 17: Numerical Differentiation
	Slide 18: Numerical Differentiation
	Slide 19: Numerical Differentiation
	Slide 20: Regression Gradient
	Slide 21: Directional Derivatives
	Slide 22: Simultaneous Perturbation Stochastic Gradient Approximation (SPSA)
	Slide 23: Simultaneous Perturbation Stochastic Gradient Approximation (SPSA)
	Slide 24: Thank you for listening! Questions?

