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1. Recap on MAB

Multi-armed Bandits (MABs) are a simple* family of models in reinforcement learning.

Simplest case (‘Stochastic K-armed bandit’):

• Actions: k ∈ {1, . . . ,K} := [K ], time steps: t ∈ {1, 2, . . . }.
• Each action k associated with distribution νk .

• Learner chooses an action at ∈ [K ] at each round t.

• Learner observes a reward Xat ,t ∼ νat .

There are a number of plausible objectives within this framework (Lattimore and
Szepesvári, 2020).

Discounted Reward Maximisation: max
a1,a2,...

E

( ∞∑
t=1

γtXat ,t

)

where γ ∈ (0, 1) (e.g. Gittins, 1979; Gittins et al., 2011).
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• Actions: k ∈ {1, . . . ,K} := [K ], time steps: t ∈ {1, 2, . . . }.
• Each action k associated with distribution νk .

• Learner chooses an action at ∈ [K ] at each round t.

• Learner observes a reward Xat ,t ∼ νat .

There are a number of plausible objectives within this framework (Lattimore and
Szepesvári, 2020).

Best Arm Identification: max
a1,a2,...aT

P

(
max
k∈[K ]

∑T
t=1 Xk,tI{at = k}∑T

t=1 I{at = k}
= max

k∈[K ]
E(Xk,t)

)

for some budget T ∈ N (e.g. Bubeck et al., 2009; Audibert and Bubeck, 2010).
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Simplest case (‘Stochastic K-armed bandit’):

• Actions: k ∈ {1, . . . ,K} := [K ], time steps: t ∈ {1, 2, . . . }.
• Each action k associated with distribution νk .

• Learner chooses an action at ∈ [K ] at each round t.

• Learner observes a reward Xat ,t ∼ νat .

There are a number of plausible objectives within this framework (Lattimore and
Szepesvári, 2020).

(Pseudo)regret Minimisation: min
a1,a2,...aT

T∑
t=1

max
k∈[K ]

Eν(Xk,t)− Eν(Xat ,k)

for some budget T ∈ N (e.g. Lai and Robbins, 1985; Auer et al., 2002) - Today’s Focus
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2. Regret Minimisation in Stochastic K-armed bandit

The regret,
T∑
t=1

max
k∈[K ]

Eν(Xk,t)− Eν(Xat ,k) :=
T∑
t=1

µ∗ − µat ,

is inevitably increasing - an oracle would achieve zero regret, any other learner more due
to uncertainty.

We seek policies whose regret is of an optimal order for large families of {ν1, ...νK}.
A policy π maps from previously observed data to the action set [K ].

Optimality is measured with respect to lower bounds on the best possible regret.
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2. Regret Minimisation in Stochastic K-armed bandit

We have two main families of lower bound: instance dependent and minimax.

• Instance Dependent (Lai and Robbins, 1985; Burnetas and Katehakis, 1996)

lim
T→∞

Reg(T )

log(T )
≤
∑
k ̸=k∗

µ∗ − µk

infν′{DKL(νk || ν ′) : E′
ν(X ) > µ∗}

• Minimax (e.g. Bubeck et al., 2013) (see also (LeCam, 1973))

Reg(T ) = Ω(
√
KT )
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2. Regret Minimisation in Stochastic K-armed Bandit

Analysis of the expected pseudo-regret often focusses on the construction of a
high-probability good event:

• e.g. (informally) estimates of the mean rewards of each action remain within certain
regions around the true parameter across all rounds.

• Outside the good event: potential for linear regret

• Inside the good event: only actions of a reasonable quality are played often

• As t increases, the conditions of the good event become stricter, meaning the regret
per round decreases.

• An algorithm that achieves the good event with high-probability will do so by
ensuring a balance of exploration and exploitation.
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2. Regret Minimisation in Stochastic K-armed Bandit

Two principles have been especially popular: optimism and randomisation. Both

1. are data-driven (‘adaptive’),

2. encourage exploration proportional to uncertainty,

3. converge to greedy decision making eventually.

Example: Optimism for rewards in [0, 1] - UCB1 (Auer et al., 2002)

• Choose each action once to initialise mean estimates µ̂k

• In round t = K + 1,K + 2, ... choose

at = arg max
k∈[K ]

[
µ̂k +

√
2 log(t)

Nk(t)

]

where Nk(t) is number of times played action k.
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2. Regret Minimisation in Stochastic K-armed Bandit

Example: Optimism for rewards in [0, 1] - UCB1 (Auer et al., 2002)

• Choose each action once to initialise mean estimates µ̂k

• In round t = K + 1,K + 2, ... choose

at = arg max
k∈[K ]

[
µ̂k +

√
2 log(t)

Nk(t)

]

where Nk(t) is number of times played action k.

The regret of UCB1 is known to satisfy

Reg(T ) ≤ 8
∑
k ̸=k∗

log(T )

µ∗ − µk
+ C

which is order-optimal, but not coefficient-wise.
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2. Regret Minimisation in Stochastic K-armed Bandit

Example: Randomisation for Bernoulli Rewards - Thompson Sampling (Thompson, 1933)

• Initialise with priors pk,0 for each action’s distribution.

• In round t = 1, 2, ... draw a sample µ̃k,t from current posterior belief pk,t for each
action.

• Choose at ∈ argmaxk∈[K ] µ̃k,t

Thompson Sampling is known to asymptotically achieve optimal instance-wise regret
(Agrawal and Goyal, 2012; Kaufmann et al., 2012b)
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3. Sharper Confidence Bounds

Since the confidence bounds drive the exploration, any slackness therein directly leads to
increased regret.

UCB1 utilises Hoeffding’s Inequality - which is generally useful for bounded observations,
but not tight when additional assumptions hold, e.g. Bernoulli data.

KL-UCB (Garivier and Cappé, 2011; Maillard et al., 2011; Cappé et al., 2013) is based
around sharper confidence sets (based on Chernoff bounds) for parametric bandits.

Bayes-UCB (Kaufmann et al., 2012a) uses quantiles of the posterior distribution in place
of frequentist upper confidence limits.
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3. Sharper Confidence Bounds

KL-UCB:

• Choose each arm once to initialise mean estimates µ̂k

• In round t = K + 1,K + 2, ... choose

at = arg max
k∈[K ]

[
max

{
µ ∈ [0, 1] : DKL(µ̂k,t || µ) ≤

log(1 + t log2(t))

Nk(t)

}]

These tighter confidence sets yield an improved (over UCB1) regret bound (in terms of
the coefficients):

Reg(T , πKL−UCB) ≤
∑
k ̸=k∗

(µ∗ − µk) inf
ϵ1,ϵ2

(
log(1 + t log2(t))

DKL(µk + ϵ1 || µ∗ − ϵ2)
+ C (ϵ1, ϵ2)

)
which is asymptotically optimal (T → ∞).
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3. Sharper Confidence Bounds: Comparison

This also realises an improved empirical performance. In a ten-armed Bernoulli bandit, we
compare regret of UCB1 and KL-UCB on the log-scale. Figures taken from Cappé et al.
(2013).

A note of caution: optimised algorithms such as KL-UCB can degrade in quality rapidly
outside their assumptions (Fan and Glynn, 2024).
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3. Sharper Confidence Bounds

Bayes-UCB:

• Initialise with priors p0,k on the parameters of each νk
• In round t = 1, 2, ...,T choose

at = arg max
k∈[K ]

[
Qpt−1,k

(1− (t log(T ))c)
]

where Qp(t) is the t quantile of distribution p.

• Observe Xat ,t and update posteriors.

This also achieves an asymptotically optimal regret (Kaufmann et al., 2012a). So optimal
policies are not unique.
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4. Contextual Bandits

In the vanilla K -armed bandit, reward distributions νk are static. Without going to a fully
general RL model, we can relax this assumption. Contextual bandits:

• Actions k ∈ [K ], time steps t ∈ {1, 2, . . . }, contexts xt ∈ X ⊂ Rd .

• Each action k is associated with a distribution νk(x).

• Learner observes context xt and chooses an action at ∈ [K ] in each round t.

• Learner observes a reward Xat ,t ∼ νat (xt), with expectation µat (xt) = E(Xat ,t).

The same regret minimisation objective may be considered

min
a1,a2,...,aT

T∑
t=1

max
k∈[K ]

µk(xt)− µat (xt).
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4. Contextual Bandits

The same regret minimisation objective may be considered

min
a1,a2,...,aT

T∑
t=1

max
k∈[K ]

µk(xt)− µat (xt).

Particularly well studied in the parametric setting, with generalised linear models, e.g.

• Linear bandit: Xk,t ∼ N(xTt θk , σ
2) (Auer, 2002; Li et al., 2010)

• Logistic bandit: Xk,t ∼ Bern
(
(1 + exp(−xTt θk))

−1
)

(Filippi et al., 2010; Faury
et al., 2020)

where θk ∈ Θ ⊂ Rd are unknown, action specific parameters.
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4. Contextual Bandits: Optimism

Regret minimisation again requires learning parameters of unknown distributions
sufficiently well - this time θk , k ∈ [K ].

In linear bandits, an oracle policy would select at ∈ argmaxk∈[K ] x
T
t θk in each round.

An optimistic approach can again work well, here for each action we compute:

UCBk,t = max
θ∈Θk,t

xTt θ,

where Θk,t is a high-probability confidence region for θk .

Much attention has focussed on deriving confidence sets which are tight and can be
computed efficiently.
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4. Contextual Bandits: Optimism

For instance, in logistic bandits, GLM-UCB (Filippi et al., 2010) forms indices based on a
regularised parameter estimate θ̂k :

UCBk,t = σ(xTt θ̂k) + ρ(t)||xt ||Σk,t
−1

where we let σ denote the logistic link function, ρ(t) controls the amount of exploration,
and Σk,t is a design matrix specific to action k .

This algorithm has a near optimal O

(√
T log3/2(T )

)
bound on its minimax, however it

has a linear dependence on a potentially large problem-specific parameter.
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4. Contextual Bandits: Optimism

GLM-UCB has a regret which is linear in κ = supx∈X ,θ∈Θ 1/σ′(xTθ).
Unfortunately, this can become quite large in certain problems. Figure from Faury et al.
(2020).
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4. Contextual Bandits: Randomisation

Thompson Sampling is also applicable, but potentially challenging, in the logistic bandit
setting (Russo et al., 2018; Dong et al., 2019).

For each arm we have a prior/posterior over θk , and the policy should in round t = 1, 2...

• Draw a sample θ̃k,t from the posterior for each action

• Choose an action at ∈ argmaxk∈[K ] σ(x
T
t θ̃k,t).

Practically this is challenging, due to the intractability of the posterior in logistic models.
Potential solutions: Laplace approximation (Russo et al., 2018), or a Gibbs sampler built
on Polya-Gamma approximation (Dumitrascu et al., 2018).

Dependence on κ is also an issue and the subject of ongoing research (Gouverneur et al.,
2024; Neu et al., 2022).
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5. Further Variants and Extensions

The optimism and randomisation principles, and accompanying regret analysis have been
extended substantially beyond K -armed and generalised linear bandits.

• Continuum-armed/Lipschitz Bandits

• Combinatorial Bandits

• Non-stationary Bandits

• Partial Monitoring

• Federated Bandits

Lattimore and Szepesvári (2020) is a great resource for more detail on foundational and
theoretical aspects.

21 / 25



References I

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem. In
Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings.

Audibert, J.-Y. and Bubeck, S. (2010). Best arm identification in multi-armed bandits. In COLT-23th
Conference on learning theory-2010, pages 13–p.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.
Machine Learning.

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure exploration in multi-armed bandits problems. In
Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portugal, October 3-5,
2009. Proceedings 20, pages 23–37. Springer.

Bubeck, S., Perchet, V., and Rigollet, P. (2013). Bounded regret in stochastic multi-armed bandits. In
Conference on Learning Theory, pages 122–134. PMLR.

Burnetas, A. N. and Katehakis, M. N. (1996). Optimal adaptive policies for sequential allocation
problems. Advances in Applied Mathematics, 17(2):122–142.

22 / 25



References II
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