Introduction To
Reinforcement
Learning

l l l'll|" | l’l |]|||| | |) I|l|
I VO B I D e D = U o D I VO I 0 = O VO s VO s D s Vs o L s WO I o L e 1o s VO
fa [y (& [o -

§
ERER R RN N NN C R R C RN CR RN C R mEn

Lancaster Al Reading Group — 22" January 2025
Based on CS285 Berkeley Course

“a dolphin riding a bike”

L5 P oo [P {200 P {5 P 551 P fU0 o U5 P 155 P 5 i 51 P 5 o U1 o S5 i 5 P U5 P 5 P 8 P [im0

Machine Learning

A computer program is said to learn from experience E
with respect to some class of fasks T and performance
measure P if its performance at tasks in T, as measured by
P, improves with experience E.

By Tom Mitchell (Prof. Carnegie Mellon University):

Experience

Experience

{(z1,91),---, (2N, yn)}

Experience

{(x1,91),---,(zN, YN)} {x1,....,xN}

Experience

{(x1,91),---,(zN, YN)} {x1,....,xN}

That is not always the casel!

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

{(z1,y1),-.-, (=N, yn)} {xq,...zN} N
Learn p(y|x) Learn p(x)

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

« Environment
{(mlayl)a“'a(xN: yN)} {wl,...,wN}

Learn p(y|x) Learn p(x)

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

« Environment
* Agent
{(mlayl)a“'a(xN: yN)} {wl,...,wN}

Learn p(y|x) Learn p(x)

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

« Environment
* Agent
{(%1,91),---,(zN, yn)} {x1,..., N} « Actions

Learn p(y|x) Learn p(x)

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

« Environment

* Agent
{(%1,91),---,(zN, yn)} {x1,..., N} « Actions

* Rewards

Learn p(y|x) Learn p(x)

The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

Environment

* Agent
{(%1,91),---,(zN, yn)} {x1,..., N} « Actions
* Rewards
Learn p(y|x) Learn p(x)

How to learn a policy
that maximise the
cumulative reward?

The RL Framework

\
:[Agent
)
state reward action

s, | |” A

R., (
| Environment]

Reinforcement Learning

Environment
Agent
Actions
Rewards

How to learn a policy
that maximise the
cumulative reward?

The RL Framework

’_l Agent }
state reward action

s, | |® A

Reinforcement Learning

Environment
Agent
Actions
Rewards

t+1

PR (
|- .
| ! l Environment]4

How to learn a policy
that maximise the
cumulative reward?

pooling

RL Examples

Fot I I = 0 = = = = = = I = = A O I
S P e AP e |80 Fiie A9 Fie B S2im [0 P PV Jiio S P AP S AW S PP e AW fim [P PP s PP o P P [0 S PP i PP P2 LA fim AP Jim [P fo

AR R R R R AR AR R R R AR AR A

RL Examples

g

Actions: muscle contractions Actions: motor current or torque
Observations: sight, smell Observations: camera images
Rewards: food Rewards: task success measure (e.g.,

running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit

What about the environments?

What about the environments?

®BRAX

What about the environments?

1mport gym

env = gym.make("Ant-v4", new step api=True)
obs = env.reset()

(@ OpenAl Gym
action = env.action_space.sample()

obs, reward, done, info = env.step(action)

env.close()

Example Environments

How to learn a "good” policy?

How to learn a "good” policy?

A simple RL algorithm: REINFORCE

How to learn a "good” policy?

A simple RL algorithm: REINFORCE

» Sample a trajectory from the current
policy.

How to learn a "good” policy?

A simple RL algor'i‘rhmi REINFORCE Vellsrpy(r) {Z '3“{51.-ﬂ:.}] ~ —i Z (Z Ve logmg(ai |si)

=1 =1

« Sample a trajectory from the current
policy.

 Estimate the gradient of the objective (use
backpropagation in the case of Neural
Networks).

How to learn a "good” policy?

A simple RL algor'i‘rhmi REINFORCE Vellsrpy(r) {Z '3“{51.-ﬂ:.}] ~ —i Z (Z Ve logmg(ai |si)

=1 =1

« Sample a trajectory from the current
policy.

 Estimate the gradient of the objective (use
backpropagation in the case of Neural
Networks).

 Update the policy using a gradient based
optimization algorithm.

The necessity of RL

« Some tasks are hard to get supervised pairs
from (e.g. movements of a robot).

The necessity of RL

« Some tasks are hard to get supervised pairs
from (e.g. movements of a robot).

* Supervised learning is not ideal for
sequential decision making.

The necessity of RL

« Some tasks are hard to get supervised pairs
from (e.g. movements of a robot).

* Supervised learning is not ideal for
sequential decision making.

 RL allows for novel solutions.

Imitation Learning

 Supervised learning is not ideal for sequential decision making.

training supervised

e mo(as|oy)
data earning

Imitation Learning

 Supervised learning is not ideal for sequential decision making.

— training trajectory
L — Ty expected trajectory

Data is not iid!

Recent advances in DL vs RL

 RL allows for novel solutions.

an espeesso machine thal makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi's head depicied as an explosion of 4 nebula

Recent advances in DL vs RL

 RL allows for novel solutions.

p()’nl)’l:n—l)

Recent advances in DL vs RL

 RL allows for novel solutions.

Next token
Image/Video Text Prev tokens

p(x‘)/ p(x\c)/ 19\()"n|Y1:;1{1

Recent advances in DL vs RL

 RL allows for novel solutions.

Image/Video Text Next t°'<<A Prev tokens
p(x')/ n(xlc’/ D(Vor [V 1)

Impressive because it looks like
somethlng a person might draw!

)

!

Recent advances in DL vs RL

 RL allows for novel solutions.

U1:33:054
01:38:39

“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone

Recent advances in DL vs RL

 RL allows for novel solutions.

Impressive because no person had
01:33:54 thought of it!

01:38:39

“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone

Q and Value Functions

« State at time t: S¢
* Action at time t: Q¢
» Reward function: (S¢, a;)

Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

« State at time t: S
* Action at time t: a;

« Reward function: 7(s¢, az)

Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

T
Q7 (st,a:) = Z Er,|7(se,a)|se, at)

t'=t

« State at time t: St
* Action at time t: a;

« Reward function: 7(s¢, a;)

Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

T
Q7 (st,a:) = Z Er,|7(se,a)|se, at)

t'=t

The Value Function is the total reward from state s; :

« State at time t: St
* Action at time t: a;

« Reward function: 7(s¢, a;)

Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

T
Q7 (st,a:) = Z Er,|7(se,a)|se, at)

t'=t

The Value Function is the total reward from state s; :

« State at time t: St
* Action at time t: a;

« Reward function: 7(s¢, a;)

Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

T
Q7 (st,a:) = Z Ery|r(8er,ar)|se, at]

t'=t

The Value Function is the total reward from state s; :

7
V7™(st) = Z Erg [7(817, atr)|8¢]

t'—t

LHFH(S!’,) — Eﬂ-ﬁ“—'ﬂ{ﬂt|51) [QW(SL? ﬂ’i)]

Q and Value Functions

Idea 1: T
QW(St: a’t) — Z Eﬂ'g [T‘(St": a’t’)|8t7 a’t}

t'=t

-
V7™(st) = Z Erg|r(se, ar)|st]

t'—t

Idea 2: . 1 T
VT(s1) = Eq,mn(an)s) (@ (St ar))

Q and Value Functions

Idea 1: T
If we have a policy ™ and we know the Q-Function we can Q7 (st,a4) = Z Erglr(se, ar)|se, aql
improve the policy by setting: t/=t

-
V7™(st) = Z Ergr(ser, aw)|se]

t'—t

VT(8t) = Eqrn(ar)s) Q7 (81, at))

Q and Value Functions

Idea 1: T
If we have a policy ™ and we know the Q-Function we can Q7 (st,a4) = Z Erglr(se, ar)|se, aql
improve the policy by setting: t/=t

m(als) =1 if a = argmax, Q7 (s.a T
(|) ij H-Q (y) L;'W(Si) :ZE?TQ[T(SH:QHHS,{]

t'—t

V7(8t) = Eq,~n(a|s) Q" (81, ar))]

Q and Value Functions

Idea 1: T
If we have a policy ™ and we know the Q-Function we can Q7 (st,a4) = Z Erglr(se, ar)|se, aql
improve the policy by setting: t/=t

! . * - "?T !r
7' (a|s) =1 if a = argmax, Q7 (s, a _
(al a Q7(s,a) V(50) = 3 Eag (s a0l
t'=t
Idea 2:) .
If Q™ (s.a) > V7 (s) V7 (s1) = Eaynn(als,) (@7 (St; ai)]

Q and Value Functions

Idea 1: T
If we have a policy ™ and we know the Q-Function we can Q7 (st,a4) = Z Erglr(se, ar)|se, aql
improve the policy by setting: t/=t

'(als) =1 if a = argmax, Q™ (s, a) . o

V7™(st) = Zhwa (817, aw)| s4]
A

Idea 2: _

If Q"(s.a) > V7(s) then a is better than average V7™(st) = Ba,~m(als:) Q7 (81, ay)]

and we can increase 7(als).

Policy 6radients:

Value Based:
Actor Critic:
Model-Based:

Type of RL Algorithms

T

QW(St: a’t) — Z]Eﬂ'g [T‘(St’: a’t’)|3t7 a’t}

t'=t

Vﬂ Zhﬂ-g S¢r. Ay! |S;]

t'—t

VT(8t) = Eqrn(ar)s) Q7 (81, at))

Type of RL Algorithms

Pglicy Gradienfs: Maximise the expected reward by Q™ (8. a;) = i]ﬁ:m (r(s4r, asr)|s¢, ay)
direct differentiation (REINFORCE). t=t

Value Based:

Actor Critic: V7 (s Z By [r(ser. aw)|si]
Model-Based.: o

VT(8t) = Eqrn(ar)s) Q7 (81, at))

Type of RL Algorithms

T
Policy Gradients: Maximise the expected reward by Q™ (8. a;) = Z]E,re (r(s4r, asr)|s¢, ay)
direct differentiation (REINFORCE). t=t
Value Based: Estimate the Value or Q Function of the T
optimal policy. V™(sy) = Z B, [r(sy. ap)|s]

Actor Critic: t'=t

Model-Based: V™ (81) = Eq,mn(ays) QT (81, at)]

Type of RL Algorithms

Policy Gradients: Maximise the expected reward by
direct differentiation (REINFORCE).

Value Based: Estimate the Value or Q Function of the
optimal policy.

Actor Critic: Estimate the Value or Q Function of the
current policy. Use it to improve policy.

Model-Based:

T

QW(StT a’t) — Z]Eﬂ'e [T‘(St": a’t’)|3t, a’t}

t'=t
T

V™ (81) = 3 Er[r(s0.ar)s]

t'—t

V™(81) = Eq,nn(alse) [Q7 (815 at))

Type of RL Algorithms

T
Policy Gradients: Maximise the expected reward by Q" (s, a;) = Z]E,re [1(84r, ayr)|8¢, ay)
direct differentiation (REINFORCE). t=t
Value Based: Estimate the Value or Q Function of the T
optimal policy. VT(s1) =Y Erplr(se,av)|si]

Actor Critic: Estimate the Value or Q Function of the b=t
current policy. Use it to improve policy. -) _
V7(8t) = Eq,~n(a|s) Q" (81, ar))]

Model-Based: Estimate the transition model and use it
for planning/improving policy/other.

Online vs Offline RL

* Online RL: The agent interacts with the environment
during training.

Online vs Offline RL

* Online RL: The agent interacts with the environment
during training.

« Offline RL: The agent uses a fixed dataset of
previously collected experiences without further

inferaction with the environment during the training
phase.

On-Policy vs Off-Policy RL

« On-Policy RL: The agent improves the policy currently
being used to make decisions.

On-Policy vs Off-Policy RL

« On-Policy RL: The agent improves the policy currently
being used to make decisions.

« Off-Policy RL: The agent improves a different policy
than the one it is using.

Exploration vs. Exploitation

« Exploitation: Go to your favorite restaurant.

« Exploration: Try a new restaurant.

Exploration vs. Exploitation

Exploitation: Go to your favorite restaurant.

Exploration: Try a new restaurant.

Exploitation: Doing what you know will yield highest
reward.

Exploration: Doing things you haven't done before, in the
hopes of getting even higher reward.

Exploration vs. Exploitation

Exploitation: Go to your favorite restaurant.

Exploration: Tr -~~~ —*

How much should T explore?

Exploitation: Doing what you know will yield highest
reward.

Exploration: Doing things you haven't done before, in the
hopes of getting even higher reward.

Applications of RL

“a dolphin riding a bike”

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, Sergey Levine. Training Diffusion Models with Reinforcement Learning. 2023.

Applications of RL

Imitation-based policies can be sensitive

source policy (motion imitation)

Smith et al., “Learning and Adapting Agility Skills by Transferring Experience.” 2022.

RL for fine-tuning LLMs

Applications of RL

Prompts Dataset

Sample many prompts

-

Initial Language Model

e09e

Source: https://huggingface.co/blog/rlhf

Train an

{sample, reward} pairs

r ™
Reward (Preferance)
Model

a B
_ oW e
G ST waddl
e

’

Qutputs are ranked
(relative, ELO, etc.)

Loram ipsum dadar,
sit arnet, consecia
adipiscing elit. Aen
Do quam falis
wulputate egel, an
Mam quam nunc
anos faucibus tinck

Iucius pahdinar, her

Generated text

Applications of RL

RL for Chip Design

Actions Reward
RL Agent Places Macros One at a Time Force-Directed Method
I l l l l l l Places Standard Cells HPWL
1 |
T A O - @ '
f . = Congestion
S -
= From Scratch = Finetune a Pre-trained Policy
0.4
0.3
g o.z\\m—m_.mmmv——*’_“m
£
8
a 01
0
0 10 20 30 40

Training Time (hrs)

Source: https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html

Applications of RL

RL for Controlling Traffic

Wu Cathy et al., Emergent Behaviors in Mixed-Autonomy Traffic, 2017

	Slide 1: Introduction To Reinforcement Learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: The 3 ML Settings
	Slide 8: The 3 ML Settings
	Slide 9: The 3 ML Settings
	Slide 10: The 3 ML Settings
	Slide 11: The 3 ML Settings
	Slide 12: The 3 ML Settings
	Slide 13: The 3 ML Settings
	Slide 14: The RL Framework
	Slide 15: The RL Framework
	Slide 16: RL Examples
	Slide 17: RL Examples
	Slide 18: What about the environments?
	Slide 19: What about the environments?
	Slide 20: What about the environments?
	Slide 21: Example Environments
	Slide 22: How to learn a “good” policy?
	Slide 23: How to learn a “good” policy?
	Slide 24: How to learn a “good” policy?
	Slide 25: How to learn a “good” policy?
	Slide 26: How to learn a “good” policy?
	Slide 27: The necessity of RL
	Slide 28: The necessity of RL
	Slide 29: The necessity of RL
	Slide 30: Imitation Learning
	Slide 31: Imitation Learning
	Slide 32: Recent advances in DL vs RL
	Slide 33: Recent advances in DL vs RL
	Slide 34: Recent advances in DL vs RL
	Slide 35: Recent advances in DL vs RL
	Slide 36: Recent advances in DL vs RL
	Slide 37: Recent advances in DL vs RL
	Slide 38: Q and Value Functions
	Slide 39: Q and Value Functions
	Slide 40: Q and Value Functions
	Slide 41: Q and Value Functions
	Slide 42: Q and Value Functions
	Slide 43: Q and Value Functions
	Slide 44: Q and Value Functions
	Slide 45: Q and Value Functions
	Slide 46: Q and Value Functions
	Slide 47: Q and Value Functions
	Slide 48: Q and Value Functions
	Slide 49: Type of RL Algorithms
	Slide 50: Type of RL Algorithms
	Slide 51: Type of RL Algorithms
	Slide 52: Type of RL Algorithms
	Slide 53: Type of RL Algorithms
	Slide 54: Online vs Offline RL
	Slide 55: Online vs Offline RL
	Slide 56: On-Policy vs Off-Policy RL
	Slide 57: On-Policy vs Off-Policy RL
	Slide 58: Exploration vs. Exploitation
	Slide 59: Exploration vs. Exploitation
	Slide 60: Exploration vs. Exploitation
	Slide 61: Applications of RL
	Slide 62: Applications of RL
	Slide 63: Applications of RL
	Slide 64: Applications of RL
	Slide 65: Applications of RL

