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Machine Learning

A computer program is said to learn from experience E
with respect to some class of fasks T and performance
measure P if its performance at tasks in T, as measured by
P, improves with experience E.

By Tom Mitchell (Prof. Carnegie Mellon University):
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That is not always the casel!
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The 3 ML Settings

Supervised Learning Unsupervised Learning Reinforcement Learning

Environment

* Agent
{(%1,91),---,(zN, yn)} {x1,..., N} « Actions
* Rewards
Learn p(y|x) Learn p(x)

How to learn a policy
that maximise the
cumulative reward?
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The RL Framework
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RL Examples
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RL Examples

g

Actions: muscle contractions Actions: motor current or torque
Observations: sight, smell Observations: camera images
Rewards: food Rewards: task success measure (e.g.,

running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit
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What about the environments?

1mport gym

env = gym.make("Ant-v4", new step api=True)
obs = env.reset()

(@ OpenAl Gym
action = env.action_space.sample()

obs, reward, done, info = env.step(action)

env.close()



Example Environments
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How to learn a "good” policy?

A simple RL algor'i‘rhmi REINFORCE Vellsrpy(r) {Z '3“{51.-ﬂ:.}] ~ —i Z (Z Ve logmg(ai |si)

=1 =1

« Sample a trajectory from the current
policy.

 Estimate the gradient of the objective (use
backpropagation in the case of Neural
Networks).

 Update the policy using a gradient based
optimization algorithm.
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Imitation Learning

 Supervised learning is not ideal for sequential decision making.

training supervised

e mo(as|oy)
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Imitation Learning

 Supervised learning is not ideal for sequential decision making.

— training trajectory
L — Ty expected trajectory

Data is not iid!




Recent advances in DL vs RL
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Recent advances in DL vs RL

 RL allows for novel solutions.

Image/Video Text Next t°'<<A Prev tokens
p(x')/ n(xlc’/ D(Vor [V 1)

Impressive because it looks like
somethlng a person might draw!
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“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone



Recent advances in DL vs RL

 RL allows for novel solutions.

Impressive because no person had
01:33:54 thought of it!

01:38:39

“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone
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Q and Value Functions

The Q-Function is the total reward from taking action a, in state s, :

T
Q7 (st,a:) = Z Ery|r(8er,ar)|se, at]

t'=t

The Value Function is the total reward from state s; :

7
V7™(st) = Z Erg [7(817, atr)|8¢]

t'—t
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Q and Value Functions

Idea 1: T
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t'=t

-
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Q and Value Functions

Idea 1: T
If we have a policy ™ and we know the Q-Function we can Q7 (st,a4) = Z Erglr(se, ar)|se, aql
improve the policy by setting: t/=t

'(als) =1 if a = argmax, Q™ (s, a) . o

V7™(st) = Zhwa (817, aw )| s4]
A

Idea 2: _

If Q"(s.a) > V7(s) then a is better than average V7™(st) = Ba,~m(als:) Q7 (81, ay)]

and we can increase 7(als).



Policy 6radients:

Value Based:
Actor Critic:
Model-Based:

Type of RL Algorithms

T

QW(St: a’t) — Z ]Eﬂ'g [T‘(St’: a’t’)|3t7 a’t}
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T
Policy Gradients: Maximise the expected reward by Q™ (8. a;) = Z]E,re (r(s4r, asr)|s¢, ay)
direct differentiation (REINFORCE). t=t
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Type of RL Algorithms

Policy Gradients: Maximise the expected reward by
direct differentiation (REINFORCE).

Value Based: Estimate the Value or Q Function of the
optimal policy.

Actor Critic: Estimate the Value or Q Function of the
current policy. Use it to improve policy.

Model-Based:

T

QW(StT a’t) — Z ]Eﬂ'e [T‘(St": a’t’)|3t, a’t}

t'=t
T

V™ (81) = 3 Er[r(s0.ar)s]
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V™(81) = Eq,nn(alse) [Q7 (815 at))



Type of RL Algorithms

T
Policy Gradients: Maximise the expected reward by Q" (s, a;) = Z]E,re [1(84r, ayr)|8¢, ay)
direct differentiation (REINFORCE). t=t
Value Based: Estimate the Value or Q Function of the T
optimal policy. VT(s1) =Y Erplr(se,av)|si]

Actor Critic: Estimate the Value or Q Function of the b=t
current policy. Use it to improve policy. - ) _
V7(8t) = Eq,~n(a|s) Q" (81, ar))]

Model-Based: Estimate the transition model and use it
for planning/improving policy/other.
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Online vs Offline RL

* Online RL: The agent interacts with the environment
during training.

« Offline RL: The agent uses a fixed dataset of
previously collected experiences without further

inferaction with the environment during the training
phase.
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On-Policy vs Off-Policy RL

« On-Policy RL: The agent improves the policy currently
being used to make decisions.

« Off-Policy RL: The agent improves a different policy
than the one it is using.
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Exploration vs. Exploitation
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Exploration: Try a new restaurant.

Exploitation: Doing what you know will yield highest
reward.

Exploration: Doing things you haven't done before, in the
hopes of getting even higher reward.



Exploration vs. Exploitation

Exploitation: Go to your favorite restaurant.

Exploration: Tr -~~~ —*

How much should T explore?

Exploitation: Doing what you know will yield highest
reward.

Exploration: Doing things you haven't done before, in the
hopes of getting even higher reward.



Applications of RL

“a dolphin riding a bike”

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, Sergey Levine. Training Diffusion Models with Reinforcement Learning. 2023.



Applications of RL

Imitation-based policies can be sensitive

source policy (motion imitation)

Smith et al., “Learning and Adapting Agility Skills by Transferring Experience.” 2022.



RL for fine-tuning LLMs

Applications of RL

Prompts Dataset

Sample many prompts

-

Initial Language Model
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Source: https://huggingface.co/blog/rlhf
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Applications of RL

RL for Chip Design

Actions Reward
RL Agent Places Macros One at a Time Force-Directed Method
I l l l l l l Places Standard Cells HPWL
1 |
T A O - @ '
f . = Congestion
S -
= From Scratch = Finetune a Pre-trained Policy
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g o.z\\m—m_.mmmv——\\\*’_“m
£
8
a 01
0
0 10 20 30 40

Training Time (hrs)

Source: https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html



Applications of RL

RL for Controlling Traffic

Wu Cathy et al., Emergent Behaviors in Mixed-Autonomy Traffic, 2017
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