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Machine Learning

A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by
P, improves with experience E.

By Tom Mitchell (Prof. Carnegie Mellon University):
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That is not always the case!
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Example Environments
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How to learn a “good” policy?

A simple RL algorithm: REINFORCE

• Sample a trajectory from the current 
policy.

• Estimate the gradient of the objective (use 
backpropagation in the case of Neural 
Networks).

• Update the policy using a gradient based 
optimization algorithm.
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Imitation Learning

• Supervised learning is not ideal for sequential decision making.

Data is not iid!
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The Q-Function is the total reward from taking action 𝒂𝒕 in state 𝑠𝑡 :

The Value Function is the total reward from state 𝑠𝑡 :
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Q and Value Functions

Idea 1:
If we have a policy π and we know the Q-Function we can 
improve the policy by setting:

Idea 2:
If                             then a is better than average 
and we can increase            .
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Type of RL Algorithms

• Policy Gradients: Maximise the expected reward by 
direct differentiation (REINFORCE).

• Value Based: Estimate the Value or Q Function of the 
optimal policy.

• Actor Critic: Estimate the Value or Q Function of the 
current policy. Use it to improve policy.

• Model-Based: Estimate the transition model and use it 
for planning/improving policy/other.
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Online vs Offline RL

• Online RL: The agent interacts with the environment 
during training. 

• Offline RL: The agent uses a fixed dataset of 
previously collected experiences without further 
interaction with the environment during the training 
phase.
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On-Policy vs Off-Policy RL

• On-Policy RL: The agent improves the policy currently 
being used to make decisions. 

• Off-Policy RL: The agent improves a different policy 
than the one it is using. 
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Exploration vs. Exploitation

• Exploitation: Go to your favorite restaurant.

• Exploration: Try a new restaurant.

• Exploitation: Doing what you know will yield highest 
reward.

• Exploration: Doing things you haven’t done before, in the 
hopes of getting even higher reward.

How much should I explore?
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Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, Sergey Levine. Training Diffusion Models with Reinforcement Learning. 2023.



Applications of RL

Smith et al., “Learning and Adapting Agility Skills by Transferring Experience.” 2022.
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Source: https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html

RL for Chip Design



Applications of RL

Wu Cathy et al., Emergent Behaviors in Mixed-Autonomy Traffic, 2017

RL for Controlling Traffic
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