

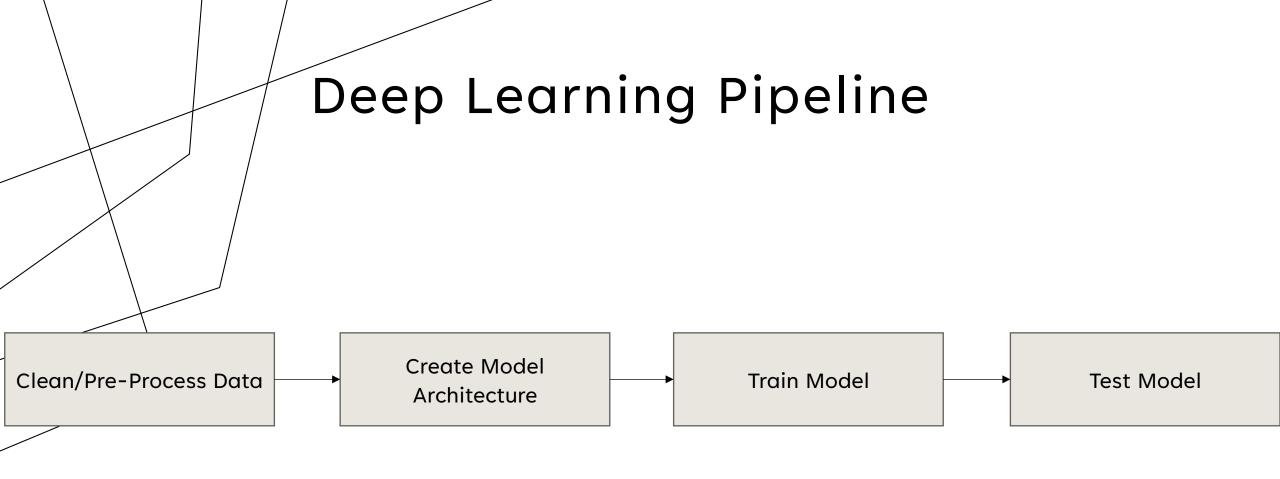
ChatGPT

Introduction to Deep Learning (with PyTorch)

Andreas Makris

23/10/2024

SORA by OpenAl



Outline

• Introduction to Deep Learning

2024

• Coding with PyTorch

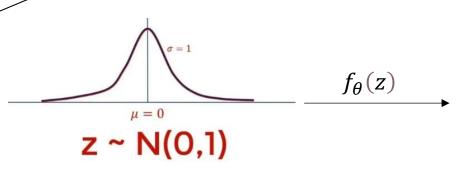
ARTIFICIAL INTELLIGENCE A program that can sense, reason,

act, and adapt

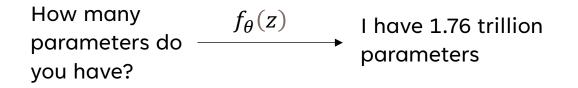
What is Deep Learning?

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time


DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data


https://mylearningsinaiml.wordpress.com/wp-content/uploads/2018/05/ai-ml-dl-image.png

Yes, but what are Neural Networks? $h^{(l)} = a(h^{(l-1)}W^{(l)} + B^{(l)})$

- Neural Networks are incredibly flexible **function approximators**
- Neural Networks contain multiple layers. They often multiply the input from the previous layer with a matrix, add some bias and use an activation function.
- Their flexibility rises from million/billion of parameters
- How do we learn these parameters?

https://arxiv.org/abs/2205.11487

Training the Model

- To estimate the parameters, use a **loss function** that we **minimize** using **backpropagation** and **gradient descent**
- Need the Neural Network to perform differentiable operations and the loss functions to be differentiable
- Supervised learning \rightarrow (x,y) pairs
- Unsupervised learning \rightarrow Only x
- Self-Supervised learning \rightarrow e.g. create (x,y) pairs using only x

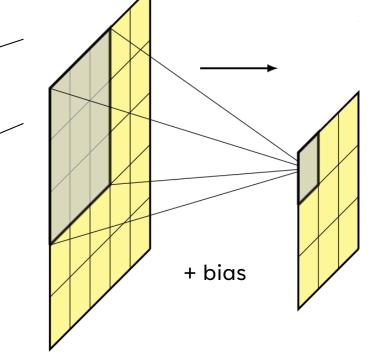
Task	Error type	Loss function	
Regression	Mean-squared error	$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$	$\mathbb{E}_{q(\boldsymbol{z})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \boldsymbol{z})] - \mathrm{KL}[q(\boldsymbol{z}) p(\boldsymbol{z})]$
		1577	N
	Mean absolute	$\frac{1}{n}\sum_{i=1}^{n} y_{i}-\hat{y}_{i} $	a^* $\sum 2\pi$ π $[11/2]$
	error		$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1} \sigma_i^2 \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{p_{\sigma_i}(\tilde{\mathbf{x}} \mathbf{x})} \left[\ \boldsymbol{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}, \sigma_i) - \nabla_{\tilde{\mathbf{x}}} \log p_{\sigma_i}(\tilde{\mathbf{x}} \mid \mathbf{x}) \ _2^2 \right]$
Classification	Cross entropy =	$-\frac{1}{n}\sum_{i=1}^{n}[y_i\log(\hat{y}_i) + (1-\hat{y}_i)] =$	$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) := \mathbb{E}_{p_{\text{data}}(\boldsymbol{x})}[\log D_{\boldsymbol{\phi}}(\boldsymbol{x})] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x})}[\log(1 - D_{\boldsymbol{\phi}}(\boldsymbol{x}))].$
	Log loss	$(1 - y_i) \log(1 - \hat{y}_i)] =$	$(/ / /) = p_{\text{data}}(w) = 0 \varphi (/) = p_{\theta}(w) = 0 (\psi (/))$

https://deepgram.com/ai-glossary/loss-function

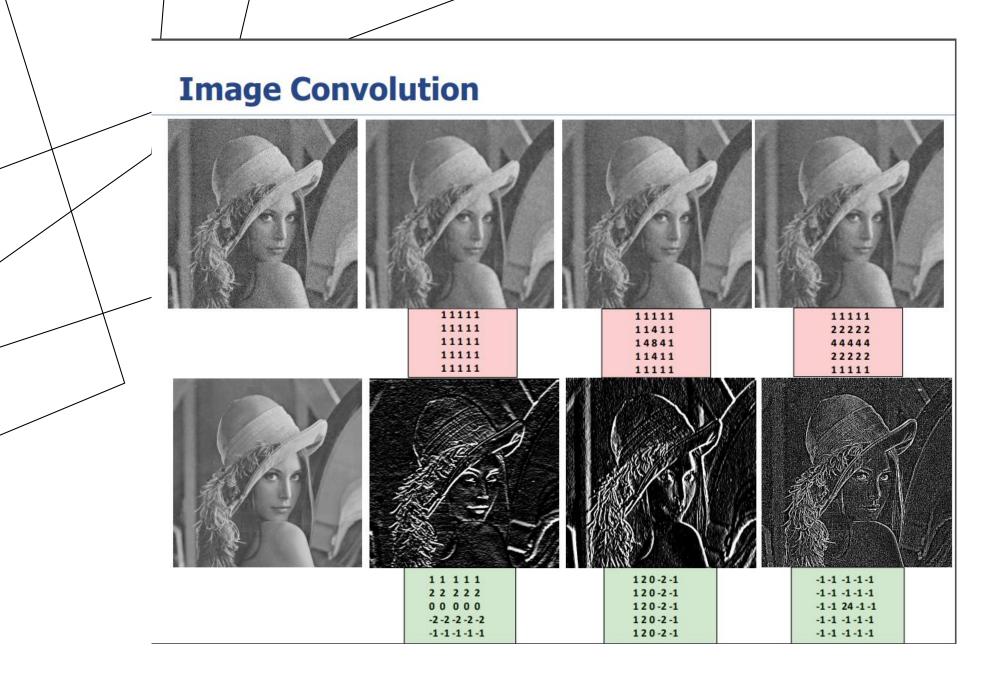
Testing the Neural Network

- How well does it approximate our function?
- Test dataset that was NOT trained on
- MSE, Accuracy, FID score, Visual Inspection, Perplexity

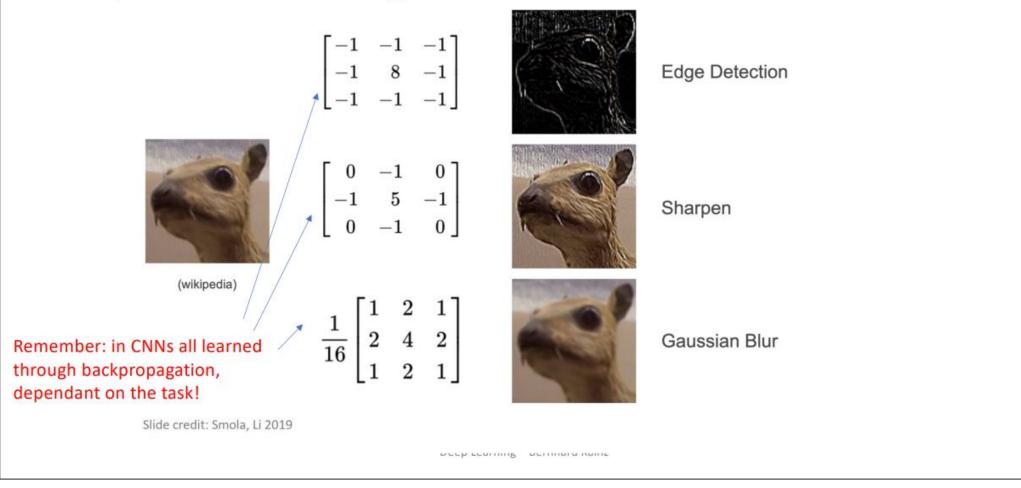
- Classify handwritten digits (0 to 9)
- Our inputs will have dimensions [B, 1, 28, 28]
- What should the output dimensions be?
- What should our architecture be to be consistent with the output?
- What should the loss function be?
- How should we evaluate the model?


$$f_{\theta}(x) \rightarrow 9$$

- Classify handwritten digits (0 to 9)
- Our inputs will have dimensions [B, 1, 28, 28]
- What should the output dimensions be?
- [B, 10]
- What should our architecture be to be consistent with the output?
- What should the loss function be?
- How should we evaluate the model?


$$f_{\theta}(x) \rightarrow 9$$

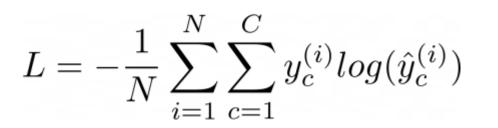
- What should our architecture be to be consistent with the output?
- Use CNN with Convolutional, MaxPool and Linear layers.



12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

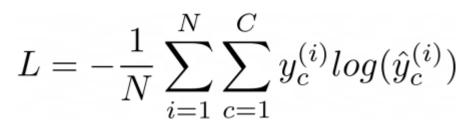
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png https://bishopbook.com

Examples of 2D image filters



2024

https://poloclub.github.io/cnn-explainer/


- Classify handwritten digits (0 to 9)
- Our inputs will have dimensions [B, 1, 28, 28]
- What should the output dimensions be?
- [B, 10]
- What should our architecture be to be consistent with the output?

- CNN
- What should the loss function be?
- Cross Entropy Loss
- How should we evaluate the model?

- Classify handwritten digits (0 to 9)
- Our inputs will have dimensions [B, 1, 28, 28]
- What should the output dimensions be?
- [B, 10]
- What should our architecture be to be consistent with the output?

- CNN
- What should the loss function be?
- Cross Entropy Loss
- How should we evaluate the model?
- Accuracy

Time to Code!

What I cannot create, I do not understand. ~Richard Feynman, 1988

Why PyTorch? https://paperswithcode.com/trends

https://colab.research.google.com/drive/1KQnXlb9QEHn0MgPq6i118GP6Cyf4QfNH