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Resources

Presentation based on:

• Introduction to Graph Representation Learning 
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

• Deep Graph-Based Learning Course 
https://github.com/basiralab/DGL/tree/main

For people that like videos:

Stanford CS224W: Machine Learning with Graphs

https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxIpqhjhPgdQy7i
mNkDn

Deep Graph Learning

https://www.youtube.com/playlist?list=PLug43ldmRSo14Y_vt7S6vanPGh-
JpHR7T
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The Usual ML/DL Assumption

Our data is independent and identically distributed!

2025 LAI Reading Group 3

Image from Entropy to Mitigate Non-IID Data Problem on Federated 

Learning for the Edge Intelligence Environment

 



Our data is independent and identically distributed!

What if it isn’t?
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Image from Entropy to Mitigate Non-IID Data Problem on Federated 

Learning for the Edge Intelligence Environment

 

The Usual ML/DL Assumption



Our data is independent and identically distributed!

What if it isn’t?

How can we use that to enhance our models?
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Image from Entropy to Mitigate Non-IID Data Problem on Federated 

Learning for the Edge Intelligence Environment

 

The Usual ML/DL Assumption



Geometric Deep Learning

The structure of the data has additional 

information.
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Image from Geometric Deep Learning Grids, Groups, Graphs, Geodesics, 

and Gauges 

 

Inductive bias refers to the assumptions a learning algorithm makes to 

generalize beyond its training data.



The structure of the data has additional 

information.

Geometric Deep Learning utilizes the structure of 

the data to improve our models. 

2025 LAI Reading Group 7

Image from Geometric Deep Learning Grids, Groups, Graphs, Geodesics, 

and Gauges 

 

Inductive bias refers to the assumptions a learning algorithm makes to 

generalize beyond its training data.

Geometric Deep Learning



The structure of the data has additional 

information.

Geometric Deep Learning utilizes the structure of 

the data to improve our models. 

We say we use inductive bias in our models.
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Image from Geometric Deep Learning Grids, Groups, Graphs, Geodesics, 

and Gauges 

 

Inductive bias refers to the assumptions a learning algorithm makes to 

generalize beyond its training data.

Geometric Deep Learning



The most common and popular structure that we 

utilize in Deep Learning are graphs.

2025 LAI Reading Group 9

Image from https://blogs.nvidia.com/blog/what-are-graph-neural-

networks/

 

Graph Neural Networks



The most common and popular structure that we 

utilize in Deep Learning are graphs.

Neural Network architectures/techniques that 

consider the graph-structure of the data.
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Image from https://blogs.nvidia.com/blog/what-are-graph-neural-

networks/

 

Graph Neural Networks



The most common and popular structure that we 

utilize in Deep Learning are graphs.

Neural Network architectures/techniques that 

consider the graph-structure of the data.

We will mainly focus on GNNs this term!
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Image from https://blogs.nvidia.com/blog/what-are-graph-neural-

networks/

 

Graph Neural Networks



Deep Learning
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Background for GNNs

Graph Theory



Deep Learning
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Background for GNNs

Graph Theory

We assume some ML/DL background.

This and next week we aim to gain some experience on Graph Theory and traditional ML for Graphs



“A graph or a network is a collection of objects along with a set 

of interactions between pairs of these objects.” (GRL Book)
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What is a Graph?



“A graph or a network is a collection of objects along with a set 

of interactions between pairs of these objects.” (GRL Book)
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What is a Graph?

“Formally, a graph 𝑮 =  (𝑽, 𝑬) is defined by a set of 

nodes 𝑽 and a set of edges 𝑬 between these nodes.” 

(GRL Book)



“A graph or a network is a collection of objects along with a set 

of interactions between pairs of these objects.” (GRL Book)
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What is a Graph?

“Formally, a graph 𝑮 = 𝑽, 𝑬  is defined by a set of 

nodes 𝑽 and a set of edges 𝑬 between these nodes.” 

(GRL Book)

For example, 𝑽={0, 1, 2, 3, 4, 5, 6, 7} and 

𝑬={(0, 1), (0, 2), (0, 7), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7)}



Graphs are everywhere! 

• Social Network Graph (nodes: individuals; edges: 

relationships or friendships)

• Computer Network Graph (nodes: computers, 

routers, or servers; edges: data connections or 

cables)

• Transportation Network Graph (nodes: cities or 

intersections; edges: roads, rail lines, or flight 

paths)

• Web Graph (nodes: webpages; edges: hyperlinks 

between pages)

• Molecule Structure Graph (nodes: atoms; edges: 

chemical bonds)

• Academic Papers Graph (nodes: authors; edges: 

whether they co-authored a paper)

2025 LAI Reading Group 17

Why do we care about Graphs?

Figure from Basira Lab



Graph Learning Tasks

Node Level Edge Level Graph Level
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cs224w

A Survey on Knowledge Graph Embeddings for Link Prediction



Graph Learning Tasks

Node Level

• Node classification/regression 

e.g. price for each node

• Node clustering

• Representation learning (node 

embeddings)

Edge Level Graph Level

2025 LAI Reading Group 19

cs224w

A Survey on Knowledge Graph Embeddings for Link Prediction



Graph Learning Tasks

Node Level

• Node classification/regression 

e.g. price for each node

• Node clustering

• Representation learning (node 

embeddings)

Edge Level

• Edge classification/regression e.g. 

edges are transactions, fraud or 

not

• Link prediction e.g. recommend 

movies

Graph Level
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cs224w

A Survey on Knowledge Graph Embeddings for Link Prediction



Graph Learning Tasks

Node Level

• Node classification/regression 

e.g. price for each node

• Node clustering

• Representation learning (node 

embeddings)

Edge Level

• Edge classification/regression e.g. 

edges are transactions, fraud or 

not

• Link prediction e.g. recommend 

movies

Graph Level

• Graph classification/regression 

e.g. is the molecule toxic

• Graph clustering

• Graph generation e.g. create 

new molecules
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cs224w

A Survey on Knowledge Graph Embeddings for Link Prediction



How to use a Graph for ML?
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Bashira Lab



How to use a Graph for ML?
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Bashira Lab

• Adjacency matrix A ( 𝑉  x 𝑉 )

• Node data X ( 𝑉  x 𝑑1)

• Edge data E ( 𝐸  x 𝑑2)

• Graph data (embedding for each graph)

𝑉 : number of nodes

𝐸 : number of edges

𝑑1 : node embedding dimension

𝑑2 : edge embedding dimension



How to use a Graph for ML?
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Bashira Lab

What if we don’t have X?

What if we want to use the 

graph to augment X?

• Adjacency matrix A ( 𝑉  x 𝑉 )

• Node data X ( 𝑉  x 𝑑1)

• Edge data E ( 𝐸  x 𝑑2)

• Graph data (embedding for each graph)

𝑉 : number of nodes

𝐸 : number of edges

𝑑1 : node embedding dimension

𝑑2 : edge embedding dimension



How to use a Graph for ML?
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Bashira Lab

What if we don’t have X?

What if we want to use the 

graph to augment X?
Before answering that, let’s look at some 

types of graphs

• Adjacency matrix A ( 𝑉  x 𝑉 )

• Node data X ( 𝑉  x 𝑑1)

• Edge data E ( 𝐸  x 𝑑2)

• Graph data (embedding for each graph)

𝑉 : number of nodes

𝐸 : number of edges

𝑑1 : node embedding dimension

𝑑2 : edge embedding dimension



Types of Graphs

Simple Graphs

• At most 1 edge between each 

pair of nodes.

• A node can’t have an edge 

with itself.

• Edges are undirected
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https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/

Wikipedia

https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/


Types of Graphs

Simple Graphs

• At most 1 edge between each 

pair of nodes.

• A node can’t have an edge 

with itself.

• Edges are undirected

Weighted Graphs

• Weighted graphs have a weight 

associated with each edge. For 

example, distance to travel 

between cities.

• We usually use the weight matrix 

rather than the adjacency matrix.
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https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/

Wikipedia

https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/


Types of Graphs

Simple Graphs

• At most 1 edge between each 

pair of nodes.

• A node can’t have an edge 

with itself.

• Edges are undirected

Weighted Graphs

• Weighted graphs have a weight 

associated with each edge. For 

example, distance to travel 

between cities.

• We usually use the weight matrix 

rather than the adjacency matrix.

Directed Graphs

• Edges have direction.
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https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/

Wikipedia

https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/


Multi-Relational Graphs
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HMSG: Heterogeneous Graph Neural Network based on Metapath 
Subgraph Learning

Learning embeddings for multiplex networks using triplet loss

Graphs that have different types of edges. Then we get an adjacency tensor of shape 

N x # of types of edges x N. Example: relationship network, edges can be Facebook, Instagram, 

Twitter

https://www.researchgate.net/publication/354435493_HMSG_Heterogeneous_Graph_Neural_Network_based_on_Metapath_Subgraph_Learning?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/354435493_HMSG_Heterogeneous_Graph_Neural_Network_based_on_Metapath_Subgraph_Learning?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ


Multi-Relational Graphs

Heterogeneous Graphs

• We also have nodes of different types!

• Example: users and movies for recommender 

systems.
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HMSG: Heterogeneous Graph Neural Network based on Metapath 
Subgraph Learning

Learning embeddings for multiplex networks using triplet loss

Graphs that have different types of edges. Then we get an adjacency tensor of shape 

N x # of types of edges x N. Example: relationship network, edges can be Facebook, Instagram, 

Twitter

https://www.researchgate.net/publication/354435493_HMSG_Heterogeneous_Graph_Neural_Network_based_on_Metapath_Subgraph_Learning?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
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Multi-Relational Graphs

Heterogeneous Graphs

• We also have nodes of different types!

• Example: users and movies for recommender 

systems.

Multiplex Graphs

• The graph can be decomposed in a set of 

different layers.

• Each layer corresponds to a different type of 

edge.

• Example: Transportation network
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HMSG: Heterogeneous Graph Neural Network based on Metapath 
Subgraph Learning

Learning embeddings for multiplex networks using triplet loss

Graphs that have different types of edges. Then we get an adjacency tensor of shape 

N x # of types of edges x N. Example: relationship network, edges can be Facebook, Instagram, 

Twitter

https://www.researchgate.net/publication/354435493_HMSG_Heterogeneous_Graph_Neural_Network_based_on_Metapath_Subgraph_Learning?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/354435493_HMSG_Heterogeneous_Graph_Neural_Network_based_on_Metapath_Subgraph_Learning?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ


ML for Graphs
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https://neo4j.com/blog/machine-learning/announcing-
graph-native-machine-learning-in-neo4j/

“ The challenge in these graph-level tasks, however, is how to define useful features that take into 

account the relational structure within each datapoint” – GRL Book



ML for Graphs
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https://neo4j.com/blog/machine-learning/announcing-
graph-native-machine-learning-in-neo4j/

“ The challenge in these graph-level tasks, however, is how to define useful features that take into 

account the relational structure within each datapoint” – GRL Book

1. Extract statistics for each node/edge/graph.

2. Use them as input to a standard ML model!



ML for Graphs
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https://neo4j.com/blog/machine-learning/announcing-
graph-native-machine-learning-in-neo4j/

“ The challenge in these graph-level tasks, however, is how to define useful features that take into 

account the relational structure within each datapoint” – GRL Book

1. Extract statistics for each node/edge/graph.

2. Use them as input to a standard ML model!

What type of statistics can we extract?



The Power of A
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A^k is the matrix of the number of paths of length k between each pair of nodes!



The Power of A
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Each entry is the total number of k-step walks starting from the corresponding vertex in the graph

e is the unit vector



Node-level Statistics
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• Node degree: number of edges a node is connected to.

https://networkx.org/documentation/stable/reference/algorithms/centrality.html

https://networkx.org/documentation/stable/reference/algorithms/centrality.html


Node-level Statistics
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• Node degree: number of edges a node is connected to.

• Node centrality: 

• Considers how important a node’s neighbours are.

• There are many different centrality measures (e.g. eigenvector centrality, betweenness 

centrality).

https://networkx.org/documentation/stable/reference/algorithms/centrality.html

https://networkx.org/documentation/stable/reference/algorithms/centrality.html


Node-level Statistics
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• Node degree: number of edges a node is connected to.

• Node centrality: 

• Considers how important a node’s neighbours are.

• There are many different centrality measures (e.g. eigenvector centrality, betweenness 

centrality).

• Eigenvector centrality: “we define a node’s eigenvector centrality via a recurrence relation in 

which the node’s centrality is proportional to the average centrality of its neighbours” [GRL 

Book]. By Perron-Frobenius Theorem the vector of centrality values is given by the eigenvector 

corresponding to the largest eigenvalue of A. Use power iteration to find that! See GRL Book.

https://networkx.org/documentation/stable/reference/algorithms/centrality.html

e: vector of node centralities

λ: constant

https://networkx.org/documentation/stable/reference/algorithms/centrality.html


Node-level Statistics
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• Clustering coefficient: 

• Measures how tightly clustered a node’s neighbourhood is.

• Numerator: Number of edges between neighbours.

• Denominator: Number of possible edges between the neighbours.

https://networkx.org/documentation/stable/reference/algorithms/centrality.html

https://networkx.org/documentation/stable/reference/algorithms/centrality.html


Graph-level Statistics
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• Aggregate node-level statistics (e.g. histograms, means).



Edge Prediction
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• Assume we know a subset of all edges.



Edge Prediction
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• Assume we know a subset of all edges.

• The features discussed so far are not very useful for the task of relation prediction.



Edge Prediction
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• Assume we know a subset of all edges.

• The features discussed so far are not very useful for the task of relation prediction.

• For edge prediction we use neighbourhood overlap measures.



Edge Prediction
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• Assume we know a subset of all edges.

• The features discussed so far are not very useful for the task of relation prediction.

• For edge prediction we use neighbourhood overlap measures.

• Count the number of neighbours that two nodes share or a normalised version of that!



Edge Prediction
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• Assume we know a subset of all edges.

• The features discussed so far are not very useful for the task of relation prediction.

• For edge prediction we use neighbourhood overlap measures.

• Count the number of neighbours that two nodes share or a normalised version of that!

• We can also consider the importance of the common neighbors! (Resource Allocation, Adamic-

Adar Index)



Edge Prediction
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• There also exist global overlap measures like the Katz index that count the number of paths of all 

lengths between a pair of nodes.

β is a hyperparameter controlling 

how much weight is given to short 

versus long paths

• A theorem allows us to calculate that.



The Problem with Traditional Approaches
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• “The approaches discussed are limited due to the fact that they require careful, hand-engineered 

statistics and measures. These hand-engineered features are inflexible—i.e., they cannot adapt 

through a learning process—and designing these features can be a time-consuming and 

expensive process.” GRL Book



Degree Normalisation
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• If we use the standard adjacency matrix for ML/DL the nodes with high degrees will “overwhelm” 

the model. We need to do some type of normalization!

• What does the above calculation do exactly? Let’s look at an example.



Degree Normalisation
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• The left multiplication multiplies each row by the number in the diagonal. Here, we divide each 

edge by the (sqrt) degree of the left node.



Degree Normalisation
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• The right multiplication multiplies each column by the number in the diagonal. Here, we divide 

each edge by the (sqrt) degree of the right node.



Degree Normalisation
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• So, this is equivalent to



Sneak Peak for Next Week 
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• What about node clustering?

• What about learning embeddings for each node?

• Graph Laplacians and Spectral Methods

• Unnormalised Laplacian Matrix:

𝑫 is the degree matrix (diagonal entries, diagonal matrix)

https://docs.neurodata.io/graph-stats-book/representations/ch6/spectral-embedding.html



Key Takeaways
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• We can include inductive biases to improve our models.

• Graphs are everywhere!

• The adjacency matrix of a matrix has many cool properties.

• For traditional ML, graph tasks require hand-crafter features which are time-consuming and 

inflexible.



THANK YOU

QUESTIONS?
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