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Topics Today

Graph Representation Learning

The Weisfeiler Leman (WL) Algorithm

(Message Passing) Graph Neural Networks

Graph Neural Networks for Transactional Graph Learning

The Expressive Power of Graph Neural Networks
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Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)

2

2

1

2

1

1 1

1

1

1

1

1

1

1

1

3

2

21

4

1

2

1

1
1

1

1

3 1

3

1

3
1

2

21

2

2

2

2

2

1

1

1 1
1

2
1

2

1

1

2

1

1

1
1

1

1
1

2 1

1

1

1

1

1

1

1

1

2

1
1

1

1
1

1

1

1 1

1

1

1
1

1

1
1

1

2

2

2

2

1

1 1

2

1
1

1

3

2
21

2

2

2

1

4

1
2

1

1

1
1

1

2

1
1

1

2

2

1
1

3 1 31

3

1

2
21

2
2

1

1 1

1
1

2
2

2

2

2

2

2

1

1

1

2

1

2
1

1

2

1

21

1

1

22

1

1

1

1

1

1

2
2

2

1

2

2

1
1

2
2

1

1

1

1
1

2
1

1

1

2
2

1

1

2

1

1 1

112

2

1

1

1

1

1

2

2

2

1

1
1

2

1

1 1

2

2

11

2

2 1
1

11
1

1

1

2

2

1

3
2

5

1

1

1
1

1
11

2

1

2 1

2

2

2

1

2

2

2

1

2

1

6
1

2

2

11

1

2 1

2 2

1

1

2

2

2

1

1 1
1

2

2

1

1

1

1

1

2

1

2

2
1

1

1 1

2

2
1

1
1

1

1

1

1

6

3

2

3

2
3

1

2
1

1

1

2

2

2

1

2

1

2
1

2
2

1

1

2

2
1

1

2

2

1
1

1

5

1

2

1

1 1

11

1
1

1

1

2

2

2

1

6 1

2

1

2

2

1
1

3

2

3

2

3

1

2
2

1

1 1
11

1 1

5

1

1

1
1

1

2

2

1

6
1

1

1

1

1

6

1

1
1

1

1

3

23

2

3

1

32

3

2

3

1

1
1

1

1

5
71

2 1

1

1

3

1

3

1

3

2

2

2

2

1

2

1

2

1
2 1

1

1

2 2

1

1

2
1

1

1

1

1

2

1

1

1

1

1
8

1

2

2

1

1

1

1

1

1
1

1
1

11

1

1

1

1

1 1

6

6

1

2
1

2

1

2
2

2

1

2 2

2

1

2

1

1

1

2

2
1

1

2

1

1

1

2

2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

2
1

2

1

2

1

11

1

1

2

1

1

1

1

1

3

2 3
1

3 2

3

1

1
1

1

1

7

5

1

5

1

6

2
2 1

5

1

1
1

5

1

1
1

2

2

2

1

1

1

11

1
1

1

1

2 1

1

1

2 2

1

1

2

2

1

1

1

1

1

1 1

5

3

2

2

1

2
2

2
1

3

1

2

1

312 2

1

1

5

1
2

2

1

1

1

1

1

3 2

1

1

2

2

1

2
1

21

1

1

8

1

8

1

8

1

2
2

2

1
2

2

2

1

3

1

2

1

2

2

1

1 3

1

2
1

2
2

1

1

1

1

2

2

1
1

1

8

1
1

1

2

2

1

1

1

8

1

1

1

1
1

6

6

1

2

1

2

1

2

2 2

1

2

2
21

2

1

2

1 2

2

11

2
1

2

1

2

2

1

1

5

1

3

2

2
2

1

1

1
1

1

5

1

3

2

22

1

1

1

11

5
1

1

1

1

1

5

1

1
1

1

1

1

1

1 1

1

1
1 1

6
6 1

2

1

2
1

22

2

1

2
2

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

2

1

1

5
1

3
2

2

2 1
1

1

1

1

5

1

3 2

2

2

1
1

1

1

1

5
1

1

1

1

1

5
1

1

1

1

1

2
2

2

2

21

1

1

2
1

1

1

2

2

2

1

2

2

2

1

8

1

21

22

1

1

8

1

2

1

2
2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

81

8

1

?



Graph Representation Learning
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Graph representation learning

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning
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The goal

Vectorial graph representations
that are adaptable to given data

In particular, to the target labels
on training data
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The problem with vectorial graph representations

We want our graph representation function ϕ to be
• permutation-invariant

for all isomorphic graphs

G ≃ H : ϕ(G) = ϕ(H)

• complete
for all non-isomorphic graphs

G ̸≃ H : ϕ(G) ̸= ϕ(H)

G Rd
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Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

We cannot get
back what we
lose here

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism

• Typical solution: drop
completeness for efficiency

– most practical graph kernels,
GNNs, Weisfeiler Leman test, . . .
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Isomorphism-Hardness

Theorem
Computing a permutation invariant and complete representation for some graph
class G is Isomorphism-hard.

• We don’t know the complexity of Graph Isomorphism
• No polynomial time algorithm is known
• It is not known to be NP-hard
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Implications

• Does this mean we cannot learn a complete representation for the class of
all graphs?

• Well, supervised learning from a fixed finite training dataset can be seen as
constant time preprocessing, i.e. it takes O(1) time.

• Thus, if we could learn a complete representation c that is computable in
polynomial time for any G ∈ G then this would imply a polynomial time
algorithm for the isomorphism problem on G

• Still, this could work with the right tools
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What about Graph Neural Networks?

• GNNs promise to learn “suitable” graph representations for “any” learning
task

• Can we use them to learn complete representations for the class of all
graphs?



The Weisfeiler Leman (WL) Algorithm
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A Quick Note on Multisets

• Multisets are collections of objects where
multiplicity does matter, and order does not
matter

– A multiset X of objects from X contains each
object in X a nonnegative number of times

– Hence it makes sense to write NX to denote the
set of all multisets of objects from X

– We can represent a multiset X of objects from X
as vector hX (X) ∈ R|X|

X =
{

, , ,
}

X =
{{

, , , , , ,
}}

hX (X) =


1
3
2
0


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WL Label Propagation Scheme (1)
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WL Label Propagation Scheme (2)

Let G be a graph class, G ∈ G, and v ∈ V(G).

Then the Weisfeiler Leman label of v in iteration k > 0 is defined as

rWLk (v) = hashk−1
(
rWLk−1(v),

{{
rWLk−1(w) | w ∈ N (v)

}})
Where

• rWL0 := fV :
⋃̇
G∈GV(G) → X ′ gives the “original” vertex labels

• hashk−1 : Xk−1 × NXk−1 → Xk is an injective function (also called a perfect
hash function)
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What Does This Do?

• Why would assigning new colors to vertices
help us in any way?

• Well, the new colors encode neighborhood
information

• They, to a certain extend, remember the
k-hop neighborhood of a vertex in iteration k
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Result of Weisfeiler and Leman

Theorem
Let G1,G2 ∈ G be two graphs. If G1 and G2 are isomorphic (respecting fV), then{{

rWLk (v) | v ∈ V(G1)
}}

=
{{

rWLk (v) | v ∈ V(G2)
}}

for all k ≥ 0.

Weisfeiler and Leman (1968)
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Isomorphic Graphs
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Nonisomorphic Graphs
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Tractable Incomplete Representations

• We now know that Weisfeiler Leman
representations are incomplete on the class
of all graphs

• There are “very few” nonisomorphic graphs
with identical Weisfeiler Leman
representations Cai et al (1992)
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The WL Algorithm and Graph Learning

• A cumulative version of WL combined with SVMs is typically a strong baseline
for learning on graphs

• Usually, k = 5 even suffices
• The WL kernel is easy to implement and fast to compute



(Message Passing) Graph Neural Networks
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Basic GNN

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))

In its oldest form, a graph neural network layer in iteration k is defined for all
v ∈ V(G) as follows: Scarselli et al (2009)

rk+1(v) = σ

Wself
k rk(v) +Wneigh

k

∑
w∈N(v)

rk(w) + bk


• Wself

k ,Wneigh
k ∈ Rdk×dk+1 are trainable parameter matrices

• σ : Rdk+1 → Rdk+1 is an element-wise nonlinear function, e.g. tanh, ReLU,
sigmoid

• b ∈ Rdk+1 are trainable bias parameters
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Stay Tuned for W and b

• Let’s assume for now, that we know how to choose Wself
k ,Wneigh

k , and b ∈ Rdk+1
• We will discuss how to learn these beasts in the next section
• For now, in neural network lingo, we are only interested in the forward pass
• (in message passing lingo, we are interested in different definitions of the agg

and upd functions)

Definition
We will use the notation θk for all trainable weights in iteration k of GNN. We will
interpret this as a flattened vector, i.e. on the previous slide θk ∈ R2dkdk+1+dk+1
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Reformulation in terms of agg and upd

aggk({{rk(w) | w ∈ N (v)}}) =
∑

w∈N(v)
rk(w)

updk = Wself
k rk(v) +Wneigh

k aggk(·) + bk+1

• Note that the aggregator is dead simple (it sums up messages)
• The interesting stuff happens in the update function
• This ensures permutation invariance of agg
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Example
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Observations

• Note that the numbers in our example tended
to grow large rather quickly

• In particular, one might expect that the
representations of high degree nodes will
contain large values, with a large difference to
the values of representations of low degree
nodes

• this might lead to numerical instabilities and
difficulties in optimization of the loss function
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Variants

• We can use the mean aggregator instead of
the sum aggregator

• this keeps the values in the computation of
high degree vertices at bay

• it should also limit the influence of individual
nodes in the training

• another suggestion is to use the symmetric
normalization aggregator

aggk(·) =
∑

w∈N(v)

rk(w)√
|N (v)| |N (w)|
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Graph Convolutional Networks (GCNs)

• A very popular variant of GNNs is the Graph Convolutional Neural Network
Kipf and Welling (2016)

• It uses symmetric normalization
• It does not distinguish between representations of v and its neighbors

rk+1(v) = reLU

Wk
∑

w∈N(v)∪{v}

rk(w)√
|N (v)| |N (w)|

+ bk


• again, W ∈ Rdk×dk+1 and b ∈ Rdk+1 are trainable parameters
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Possible Issues with GCNs

• GCNs likely lose some (important) information
– by construction, GCNs can never assign a different weight to the former representation

of v
– hence GCNs cannot distinguish between v and its neighbor

• The symmetric normalization (partially) inhibits to learn from the degree of v



32/47LAI Reading Group | Introducing GNNs

Graph Isomorphism Networks (GINs)

• Another variant adds a multiple layer trainable neural network in each
message passing step Xu et al (2019)

• Let NNθk be a (multilayer) neural network (with trainable weights and
element-wise non-linearities)

• Let ϵk ∈ R be a trainable weight

rk+1(v) = NNθk

(1+ ϵk)rk(v) +
∑

w∈N(v)
rk(w) + bk


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Possible Issues with GINs

• GINs give you a lot of freedom to choose:
• How many layers should your MLP have?
• How many hidden units per hidden layer?
• Which non-linearity should be chosen?
• All these choices will be hyperparameters in learning...

– the authors suggest to choose a small MLP
– with one or two hidden layers
– 16 or 32 hidden units per layer (for low-dimensional initial node representations)
– reLU activation functions



(Message Passing) Graph Neural Networks | Graph Neural
Networks for Transactional Graph Learning
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GNNs for Transactional Graph Learning

• We have now discussed different variants of neural networks that can be
used as update and aggregator functions in the message passing framework

• How can we train these neural networks (weights) in a graph classification
setting?

• ...well, as usual with
– (stochastic) gradient descent,
– back-propagation,
– and a differentiable loss function
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Graph Pooling

• The step from individual node representations
to a graph representation is called pooling

• Given vertex representations
{{rk(v) | v ∈ V(G)}} we can, for example, use

– sum pooling: r(G) :=
∑

v∈V(G)
rk(v)

– mean pooling: r(G) := mean ({{rk(v) | v ∈ V(G)}})
– max pooling: r(G) := max ({{rk(v) | v ∈ V(G)}})
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Graph Classification with Neural Networks

• Neural Networks for classification tasks are
often trained with the negative log likelihood
loss function of a softmax classification

LG,y(hθ) =
∑
G∈D

− log
(
y⃗(G)T softmax(r(G))

)

• y⃗(G) ∈ 1
d is a one-hot vector encoding of the

class of G ∈ G,
– for G with y(G) = ci, we set y⃗(G) = e⃗i, i.e., the ith

unit vector
• r(G) ∈ Rd is the last hidden representation of
G
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One Epoch of Training

Given Training set D ⊆ G, y : D→ C, learning rate γ, number of message
passing steps k, initial vertex representation function r0

Output Updated weights θ0, . . . , θk−1, θgraph, θ
′

1: for G ∈ D do
2: Run k iterations of your graph neural network message passing for all
v ∈ V(G)

3: Aggregate the vertex representations of all vertices in G and update the
result

to obtain r(G)
4: Apply NNθ′ to the resulting representation r(G)
5: Compute Ly(hk,θ0,...,θk−1,θgraph,θ′)

6: Set (θ0, . . . , θk−1, θ′) = (θ0, . . . , θk−1, θgraph, θ
′)− γ∇Ly(hk,θ0,...,θk−1,θgraph,θ′)



(Message Passing) Graph Neural Networks | The Expressive
Power of Graph Neural Networks
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Expressivity (1)

• Isomorphism defines an equivalence relation
on any graph class G

• We can consider the quotient space Giso that
contains exactly one representative graph GX
for each subset X ⊆ G of pairwise isomorphic
graphs in G

• Our main assumption means that our target
function f : G → Y that is invariant under
isomorphism induces a function

fiso : Giso → Y

fiso(GX) = f (GX)
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Expressivity (2)

• Complete functions on G induce injective functions on Giso
• Importantly, injective functions on Giso are the most expressive functions in

the following sense:

Definition
Let f , f ′ : G → Y be two functions that are invariant under isomorphism. f ′ is less
expressive than f , denoted f ′ ≤x f if

f (G) = f (H) ⇒ f ′(G) = f ′(H)

• f , f ′ are equally expressive if f ≤x f ′ and f ′ ≤x f
• f ′ is strictly less expressive than f , written f ′ <x f if f ′ ≤x f and not f ≤x f ′
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GNN and WL Representations are Equally Expressive (1)

Theorem
Let G be the class of all graphs and let Rk : G → Rd be a representation of G
computed by a message passing graph neural network rk with k iterations and
some final graph aggregation step agg′ ({{rk(v) | v ∈ V(G)}}). Then

Rk ≤x RWLk
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GNN and WL Representations are Equally Expressive (2)

Theorem
Let G be the class of all graphs and let Rk : G → Rd be a representation of G
computed by a message passing graph neural network rk with k iterations and
some final graph aggregation step agg′ ({{rk(v) | v ∈ V(G)}}). Then

RWLk ≤x Rk

if the following conditions hold:
1. rk aggregates and updates node features with injective functions agg and upd

in
rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))

2. Rk’s graph-level aggregation step, which operates on {{rk(v) | v ∈ V(G)}}, is
injective.
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The GIN Theorem

Lemma
Assume X is countable. Then there exists a function f : X → Rd such that for
infinitely many choices of ϵ,

h(c, X) = (1+ ϵ) · f (c) +
∑
x∈X

f (x)

is unique for each pair (c, X), where c ∈ X and X ⊆ X is a multiset of bounded
size.
Moreover, any function g over such pairs can be decomposed as

g(c, X) = ϕ

(
(1+ ϵ) · f (c) +

∑
x∈X

f (x)
)

for some function ϕ.



Extensions to Message Passing
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At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs

• Number and type of cycles in
molecules is important

• But

!
• Extension of the Message

Passing Paradigm over
generalized neighborhoods
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A glimpse at one such Architecture

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs



Chapter 1 | Appendix
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