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Univariate normal distribution parameter space



Fisher metric on a model family
In the space of distributions, use Kullback-Leibler divergence as local distance:



Fisher metric on a model family
In the space of distributions, use Kullback-Leibler divergence as local distance:

By taking Taylor expansion

 we get a symmetric approximation

where 

is called the Fisher Information Matrix.



Fisher metric on a model family

Normal distribution

Differentiating gives FIM

corresponding to hyperbolic metric:
 



Fisher metric on a model family

How does this geometry look for more complex model families such as neural networks?

We can think about two practical applications:

1. Natural gradient descent
2. Model selection



Natural gradient descent

Standard gradient descent update is

This comes from solving the constrained optimization problem

Better is to solve 

This leads to natural gradient descent update

 



Natural gradient descent

Natural scaling 

Gradient vectors are scaled by the inverse FIM

This is probability-informed and 
parameter-invariant. 



Natural gradient descent

For neural networks life is less simple. 

• How do we compute the                                         ?

• How do we compute the inverse                ?

• What if               doesn’t exist? 
Natural scaling 



Natural scaling 

Natural gradient descent

For neural networks life is less simple. 

• How do we compute the                                         ?

• How do we compute the inverse                ?

• What if               doesn’t exist? 



A toy example

Consider 3-parameter (for 
ease of visualisation) mixture 
model

The FIM

can be estimated by Monte 
Carlo for any 



A toy example



A toy example



Model family with parameter space

Training data

Model fitting means minimizing  

Empirically

Bayes posterior is  

 

Bayesian model selection



Bayes posterior  

Denominator is called the model evidence:

 

Irrelevant at model fitting but is the likelihood of the model class (e.g. neural 
network architecture) given the data.

Needed at model selection.

Bayesian model selection



Claim: asymptotically

where BIC is the Bayesian Information Criterion

 

(MP means ‘maximum posterior’.)

Model selection by minimizing BIC penalises

Yet neural network models can generalise well with extremely high dimension. 

Bayesian model selection



A model family is called regular if

• the map                        is injective

• Fisher matrix is nonsingular                              for all 

Otherwise it’s called strictly singular.

Machine Learning’s dirty secret:
most useful model families 
(mixture models, HMMs, neural 
networks, …) are strictly singular!

And BIC is only valid for regular models!

Singular models

Image source: ref [3]



Let’s justify the claim. We needed asymptotic approximation for the model evidence

Start with Taylor approximation

Equivalent to approximating the posterior as a normal distribution in a neighbourhood of   
            with covariance matrix                     

When we substitute into the integral, it turns out that, assuming                                   , we can infer

Singular models



Singular models



Arnol’d, Gusein-Zade, Varchenko (1985): a general                                                        has 
asymptotic expansion
  

for some constants

So for model selection we should use

So what do              mean and how do we calculate them?

Generalising BIC



Generalising BIC

Watanabe (~2009):

                   with equality iff the model family is regular;

                                        the preimage in         of                           with equality if         is minimally singular

Image source: ref [3]



Generalising BIC

Monomial case (Arnol’d, Gusein-Zade, Varchenko):

Suppose

Then

where 

 

Image source: ref [3]



Resolution of singularities
(Hironaka)

We can always reduce to 
the monomial case by 
blowing up.
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