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Univariate normal distribution parameter space 2 = 4 + 10



Fisher metric on a model family

In the space of distributions, use Kullback-Leibler divergence as local distance:

p(z|0)
p(x|d +9)

KL(0]|6 + 6) /p($|6') log dz



Fisher metric on a model family

In the space of distributions, use Kullback-Leibler divergence as local distance:

p(z|0)

d
p(zl0+0)

KL(0]|6 + 6) /p(:r:|9) log

By taking Taylor expansion

1
log p(z|0 + 6) ~ log p(x|0) + 61 Vg log p(z|6) §5Tvglogp(3:|9)5

we get a symmetric approximation

1
KL(0]10 + ) ~ 5671(6)5 + o(18]?)

where

1(6) = —E[V} log p(x|0)] = E[Vglog p(z|0) - (Vg logp(z|6))]

IS called the Fisher Information Matrix.



Fisher metric on a model family

Normal distribution 8 = (u, o)

| _ 1 (z — 1)’
P(z | py0) = o exp 53

Differentiating gives FIM

1
I(p’: G-) — (JE 2 )

o2
corresponding to hyperbolic metric: /_\

ds? — dp® + 2do? / /ﬁq
o2




Fisher metric on a model family

How does this geometry look for more complex model families such as neural networks?
We can think about two practical applications:

1. Natural gradient descent
2. Model selection



Natural gradient descent

Standard gradient descent update is
O111 = 0y — Vo L(0)
This comes from solving the constrained optimization problem
mgnL(G +46) s.t. ||4]| <e
Better is to solve
min L(f +6) st. KL(p(z|0) || p(z|0 + 9)) ~ §TI(0)8 < e

This leads to natural gradient descent update

Orr1 =0 — 7769]5(9), where 65 = 1(9)_1V9



Natural gradient descent

Gradient vectors are scaled by the inverse FIM

i

Vo =1(6)"1V,

This is probability-informed and
parameter-invariant.

Natural scaling
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Natural gradient descent

For neural networks life is less simple.

6 € R* where k ~ 10° 71010

* How do we compute the k X k matrix I(6) ?

- How do we compute the inverse I()~! ?

e Whatif I(0)~' doesn’t exist?

Natural scaling
0= (7
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Natural gradient descent

For neural networks life is less simple.

6 € R* where k ~ 10° 71010

e Whatif I(0)~' doesn’t exist?

Natural scaling
10~t=(°
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A toy example

Consider 3-parameter (for
ease of visualisation) mixture
model

aN(u, o) + (1 —m)N(0,1)

The FIM
1(0) = —E[V; logp(z | 6)]

can be estimated by Monte
Carloforany g — (7, p, o)
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A toy example

Hold m = 0.5, 0 = 1.
Plot det I(0) with u:

Determinant of FIM vs pz (g1 = 0)
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A toy example

Hold u =1, o = 1.
Plot det I(6) with 7r:
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Determinant of FIM vs pi (i1 = 0, p2 = 1)
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Bayesian model selection

Model family with parameter space © C RF
Trainingdata D = {z1,...,Z,}
Model fitting means minimizing L(¢) = —Elogp(z|6)
1 n
Empirically Lp(0) = —— ] ;10
mpirically Lp(6) n; og p(x;|0)
Bayes posterior is

p(0] D) = - p(B)e 0



Bayesian model selection

Bayes posterior

p(0] D) = - p()e "o

Denominator is called the model evidence:

Zp = f e "Ep0) 4 (9)dh
©

Irrelevant at model fitting but is the likelihood of the model class (e.g. neural
network architecture) given the data.

Needed at model selection.



Bayesian model selection

Claim: asymptotically

log Zp = —BIC + O(l), n — o0

where BIC is the Bayesian Information Criterion

k
BIC = nLD(QMP) 5 logn

(MP means ‘maximum posterior’.)
Model selection by minimizing BIC penalises k£ = dim ©

Yet neural network models can generalise well with extremely high dimension.



Singular models

A model family is called regular if
* themap © — P isinjective
 Fisher matrix is nonsingular det I(8) # 0 forall § € ©

Otherwise it’s called strictly singular.
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Machine Learning’s dirty secret: 0.6

most useful model families 0.5
(mixture models, HMMs, neural
networks, ...) are strictly singular!
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And BIC is only valid for regular models! 03505 ot o oemos



Singular models

Let’s justify the claim. We needed asymptotic approximation for the model evidence

Zp = /9 e " (9)4(9)db

Start with Taylor approximation
LD(H) o~ LD(GMP) -+ ;(9 — QMP)I(GMP)(H — @MP)T

Equivalent to approximating the posterior as a normal distribution in a neighbourhood of
Omp With covariance matrix J(gyp)~!

When we substitute into the integral, it turns out that, assuming det I(0yp) # 0, we can infer

Zp = o~ LD (0mp) (%)kﬂ ¢(Omp)
v/det I (Oyp)

n



Singular models

Sketch proof: Start from Gauss integral

k/2
/ € (C/Q)HwHEd-“;— (_2 )
RF C

Using this, the Laplace approzimation says suppose f : R¥ — R has nondegenerate Hessian
at the origin det V2 f(0) # 0, and we’re interested in

Z(n) = / e~ (W) duy
Rk
Then asymptotically as n — oo,

Y ry o (0),) —k/2 (2m)"
Z(n) & \/detvzf(())

The formula for Zp follows by applying Laplace to f(w) = Lp(w — Oyp).



Generalising BIC

Arnol’d, Gusein-Zade, Varchenko (1985): a general ZD:/BRLD(G)qb(G)d{? has
asymptotic expansion ©

Zp ~ e Mo Our) C'n_)‘(log n)"" ! asn— oo

forsomeconstants C e R, A€ Q, v eN

So for model selection we should use

WBIC = nLp(6ump) + Alogn — (v — 1) loglogn

So what do (A, ) mean and how do we calculate them?



Generalising BIC

Watanabe (~2009):

with equality iff the model family is regular;




Generalising BIC

Monomial case (Arnol’d, Gusein-Zade, Varchenko):

Suppose Lp(f) = 0" and ¢(0) = ™ where k,T € Z>g

Then L(z,y) =2’
1
Zp~ C -n *(logn)" ! (Av)=(51)
where
\ = min i + 1
( Kg

L(z,y) = (zy)*

v = multiplicity of this minimum

()= (5.2)




Resolution of singularities

(Hironaka) |

E
We can always reduceto
the monomial case by
blowing up.
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