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QOutline

» We begin with spectral graph theory fundamentals (graphs,
adjacency matrices, Laplacians, eigenvalues and eigenvectors).

» Spectral clustering, including graph cut objectives (RatioCut,
Normalised Cut) and their relaxation via eigenvectors.
> xc,./Laplacian Eigenmaps and connections to manifold learning.

» Node embedding approaches: matrix factorisation methods (like
using adjacency spectra) and random-walk based methods
(DeepWalk, node2vec), highlighting their connections to spectral
techniques.
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Spectral Graph Theory Fundamentals
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Graphs and Matrices

Graph G (Nodes A-J)
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Graphs, Matrices, and Spectra

Graph G = (V,E): V nodes, E edges (assume undirected, possibly
weighted).

» Adjacency matrix A: A; = 1 if edge i-j exists (or weight if
weighted), else 0. Symmetric for undirected graphs.
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Graphs, Matrices, and Spectra

Graph G = (V,E): V nodes, E edges (assume undirected, possibly
weighted).
» Adjacency matrix A: A; = 1 if edge i-j exists (or weight if
weighted), else 0. Symmetric for undirected graphs.
> Degree matrix D: diagonal matrix with D;; = deg(i) = >, Aj.
» Graph Laplacian L: L = D — A (combinatorial Laplacian).
» Properties:

» L is symmetric (for undirected G) and positive semi-definite.
» [1=0 (since D1 = Al), so 0 is an eigenvalue.

» Normalised Laplacians:
> Lym = D"Y2LD7Y2 = | — D71/2AD71/2 (symmetrised)
» L, =D7"1L=1—-D"'A (random-walk Laplacian).
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Eigenvalues and Eigenvectors of L

For an n-node connected graph:
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Eigenvalues and Eigenvectors of L

For an n-node connected graph:

> [ has n real eigenvalues 0 = A1 < Ap < --- < A

» \; = 0 (eigenvector 1).

> Multiplicity of A = 0 equals number of connected components.

» Orthogonal eigenvectors: L = VAV, with V = [vy,...,v,] and
A = diag(A1, ..., A\n).

» Second-smallest eigenvector: v, (Fiedler vector) associated with
A2. Often reveals community structure (more later).
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Connected Graph (Path of 5 nodes)

Disconnected Graph (2 Components of 3 nodes)
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Rayleigh Quotient and Variational Characterisation

For symmetric L, the Rayleigh quotient of a nonzero vector x is:
x " Lx

R(x) := T

» Expanding for L =D — A:

x'x =" Aji(xi — x)%/2.
i

> By the Courant-Fischer theorem:

.
x ' Lx
A2 = min .
275300 xTx
» The minimum is attained by x = v, (Fiedler vector).
» Constraint x L 1 (orthogonal to 1) ensures we skip the trivial
eigenvector.

» Thus ), is the smallest non-zero eigenvalue, solving minx" [x s.t.

x'x=1,x"1=0.
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Cheeger’s Inequality

» Conductance ($): For a subset S C V,

cut(S, S)
d(S5) = =
(%) min(vol(S), vol(5))’
where vol(S) = Y, s deg(i) and cut size: cut(S, S)= ZIGSJ€§ A

(Total weight of edges crossing the partition S vs complement).

i
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Cheeger’s Inequality
» Conductance ($): For a subset S C V,

cut(S, S)
min(vol(S), vol(S))’

o(S) =

where vol(S) = Y, ¢ deg(i) and cut size: cut(S,S) = > icsjes Al
(Total weight of edges crossing the partition S vs complement).
> Cheeger’s inequality: Relates )\ to the best conductance ® of any

cut: \
52 < </2N.

> Interpretation: A small \» implies existence of a cut with small
conductance (a good balanced partition). Conversely, a strong
spectral gap (large \2) indicates the graph is well-connected (no very
sparse cut).

9/39



Graph colored by Fiedler vector
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Spectral Clustering
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Graph Clustering and Cut Objectives

Goal: Partition graph into k clusters (V, ..., Vi) such that:

> Many edges inside clusters, few edges between clusters.
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Graph Clustering and Cut Objectives

Goal: Partition graph into k clusters (V, ..., Vi) such that:

> Many edges inside clusters, few edges between clusters.

Simple objective: minimise cut(V, V1) for a bisection.

Problem: trivial solution can isolate a single node (very small cut but
unbalanced clusters).
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Graph Clustering and Cut Objectives

To encourage balanced partitions:
> RatioCut: for a k-partition,

k —_
t me Vm
Reut(Va, ..., Vi) = > cut(Vem, Vin)

Vi

m=1

(Penalise small clusters via |V,,| in denominator.)
» Normalised Cut (Ncut):

k

t(V, V
Neut(Va, ..., Vi Z cut(Vim, Vim)

— vol(Vim)

(Denominator uses volume = sum of degrees.)
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Degenerate Balanced

o0 00006000606 00600000000

cut(s, S) =1 cut(s, S) =1
RatioCut = 1.11 RatioCut = 0.40
Normalized Cut = 1.06 Normalized Cut = 0.22
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Spectral Relaxation of RatioCut (Unnormalised)

RatioCut for kK = 2: _
cut(S,S) n cut(S, S)

|5 |5

(with SUS = V).
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Spectral Relaxation of RatioCut (Unnormalised)

RatioCut for kK = 2: _
cut(S,S) n cut(S, S)

|5 |5

(with SUS = V).

Represent a 2-partition by an indicator vector y € 0,1" (or £1"): e.g.
yi=1ifieS§ 0if i €S. Alternatively use z € +£1" with z; = +1
indicating two sides.

One can show:

cut(S,S) = %ZT Lz

and |S|=3n+33,z. (Forze £1, 3,z =S| —|5])
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Spectral Relaxation of RatioCut (Unnormalised)

» The balanced condition |S| = |S| or generally treating |S| as a
constant yields a formulation: minimize z" Lz s.t. z; € 1 and
T
z'1=0.
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Spectral Relaxation of RatioCut (Unnormalised)

» The balanced condition |S| = |S| or generally treating |S| as a
constant yields a formulation: minimize z" Lz s.t. z; € 1 and
z'1=0.

> Relax z to take real values: solve the minimisation x' Lx s.t.
x'1=0,x"x = n (some normalisation).

» Solution: x = v, (Fiedler vector).

» So the relaxed optimal partition: S =1i:v; >0 and S=i: voi <0
(or threshold by median).
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Normalised Spectral Clustering (Shi and Malik 2000)

For Normalised Cut, we use the normalised Laplacian. The relaxation
leads to solving:
Lowx = AX,

with x as the indicator (generalized eigenproblem Lx = ADx).
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Normalised Spectral Clustering (Shi and Malik 2000)
For Normalised Cut, we use the normalised Laplacian. The relaxation

leads to solving:
Lowx = AX,

with x as the indicator (generalized eigenproblem Lx = ADx).

Algorithm (Normalised Spectral Clustering for k clusters):

1. Compute k eigenvectors v, ..., vk of Lsym (or Lrw) corresponding to
the k smallest eigenvalues. (v = 1/4/n is trivial and often discarded
for clustering).

2. Form matrix U € R™* with U;; = (v;)i. Each row U; , is the
k-dimensional embedding of node /.

w

(Optionally normalise rows if using Lsym to get unit length vectors.)

4. Cluster the points {U;.}"_; in R¥ using k-means (or another
clustering in Euclidean space).

5. Assign nodes to clusters according to the k-means output.

For k = 2, this reduces to thresholding v2 as previous slide.
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Original Graph (True Clusters)
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Choosing Number of Clusters and Practical Notes

» How many clusters (k)? One heuristic: look for an "eigengap” - a
large gap in the magnitude of eigenvalues Ay vs Ax11. A big jump
suggests k meaningful clusters.
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Choosing Number of Clusters and Practical Notes

» How many clusters (k)? One heuristic: look for an "eigengap” - a
large gap in the magnitude of eigenvalues Ay vs Ax11. A big jump
suggests k meaningful clusters.

P> The eigenvectors can be sensitive to graph structure; noise or
nearly-equal eigenvalues can cause instability. Using k-means on
multiple eigenvectors tends to be more stable for k > 2.

» Normalised vs unnormalised: Normalised spectral clustering often
performs better on imbalanced degree graphs, ensuring each cluster
has fair volume. Unnormalized is simpler but may bias toward cutting
off small degree nodes.

» Complexity: Computing eigenvectors can be expensive (O(n?) in
worst case). For large graphs, use sparse methods or approximate
eigen-solvers.
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Example: 2-Cluster Spectral Partitioning (Karate
Club)

Zachary's Karate Club social network (34 nodes, 78 edges). A known split
occurred (two factions after a conflict).
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Example: 2-Cluster Spectral Partitioning (Karate
Club)

Zachary's Karate Club social network (34 nodes, 78 edges). A known split
occurred (two factions after a conflict).

Graph:

» Zachary's Karate Club network. Colors indicate the actual split of the
club. This graph will be partitioned via spectral clustering.

» Compute the Fiedler vector (vo of L). Then cluster by its sign
(unnormalized spectral bi-partition).

Result: Spectral clustering perfectly splits the two factions (except
possibly one node) - the Fiedler vector's sign corresponds closely to the
true division (correlation 0.86 between vy and ground-truth split).
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Actual Factions (Zachary's Karate Club) Spectral Bi-partition (Fiedler vector)
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Spectral Embedding Visualisation (Karate Club)

» We can embed each node in R? using the first two nontrivial
Laplacian eigenvectors (v2,v3). Plotting these coordinates:
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Spectral Embedding Visualisation (Karate Club)

» We can embed each node in R? using the first two nontrivial
Laplacian eigenvectors (v2,v3). Plotting these coordinates:

» Embedding of Karate Club nodes in 2D using vy (horizontal) and vs3
(vertical). Green “x" = Mr. Hi's faction, Red “x" = Officer’s
faction. The two clusters separate clearly along v, (Fiedler axis).
Some substructure in the green group is visible along v3. This
spectral embedding clusters the nodes naturally.

22/39



Spectral Embedding Visualisation (Karate Club)

| 2

>

We can embed each node in R? using the first two nontrivial
Laplacian eigenvectors (v2,v3). Plotting these coordinates:

Embedding of Karate Club nodes in 2D using vy (horizontal) and v3
(vertical). Green “x" = Mr. Hi's faction, Red “x" = Officer’s
faction. The two clusters separate clearly along v, (Fiedler axis).
Some substructure in the green group is visible along v3. This
spectral embedding clusters the nodes naturally.

The second eigenvector (x-axis) clearly divides the two main clusters

(red vs blue). The third eigenvector (y-axis) shows minor splits within
one cluster (less significant). This illustrates how higher eigenvectors
can capture finer structure beyond the first split.
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Laplacian Eigenmaps

Scenario:

» We have n data points (nodes), possibly lying on a low-dimensional
manifold embedded in high-dimensional space.

» We know pairwise similarities (or build a nearest-neighbor graph).

» How to embed them in a lower-dimensional space while preserving
local structure?
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Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):
» Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wj; reflecting similarity).
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» Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wj; reflecting similarity).

» Goal: find low-dim coordinates y; € RY for each node i such that if i
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subject to constraints preventing trivial solution (e.g. %Zﬂi -0
and %Z,-yiy,-T = Iy, or simpler: YTDY =1).
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Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):

| 2

>

Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wj; reflecting similarity).

Goal: find low-dim coordinates y; € RY for each node i such that if i
and j are connected, then y; and y; are close. (Preserve local
neighborhood distances.)

Formulate as optimising quadratic form on the graph:

minimise Z wii|lyi — yj||2
iJj

subject to constraints preventing trivial solution (e.g. %Ziy,- =0
and %Ziy,-y;r = Iy, or simpler: YTDY =1).
This optimisation can be solved via the bottom d + 1 eigenvectors of
L (excluding the trivial all-ones direction). The solution y; is given by
these eigenvectors (just like clustering but using continuous
embedding).
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Laplacian Eigenmaps vs. PCA (Linear methods)

» PCA (Principal Component Analysis) finds a linear projection that
best preserves variance (global structure) - it doesn't account for
nonlinear manifolds. It treats distances between all points equally.
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Laplacian Eigenmaps vs. PCA (Linear methods)

» PCA (Principal Component Analysis) finds a linear projection that
best preserves variance (global structure) - it doesn't account for
nonlinear manifolds. It treats distances between all points equally.

» Laplacian Eigenmaps (LE) focuses only on preserving local
neighborhood relationships (it's a nonlinear method). Far apart
points on the manifold can be projected far apart or even jumbled, as
long as local structures remain.

» LE is one of several manifold learning techniques (others: Isomap,
Locally Linear Embedding, Diffusion Maps). It is closely related to
spectral clustering: instead of discrete clusters, we get continuous
coordinates (which could also be used for clustering by further
processing).
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Laplacian Eigenmaps vs. PCA (Linear methods)

> Example: Swiss roll manifold. If data lies on a twisted 2D surface
in 3D: PCA would fail to unroll it (since it's nonlinear). Laplacian
Eigenmaps can “unroll” the manifold by using the graph of nearest
neighbors - eigenvectors of L recover the underlying 2D
parameterisation (up to distortion) (conceptually shown in figure).

> Limitations: Requires choosing a neighbourhood graph and weight
scheme; sensitive to graph construction. Eigen-decomposition can be
expensive for very large n.
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Node Embedding Approaches
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Graph Node Embeddings: Overview

Beyond clustering into communities, we often want to represent each node
as a point in RY (with d < n) for tasks like link prediction, visualisation,
or as features for ML models.
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Graph Node Embeddings: Overview

Beyond clustering into communities, we often want to represent each node
as a point in RY (with d < n) for tasks like link prediction, visualisation,
or as features for ML models.

Two broad families:
1. Matrix Factorisation (Spectral) methods: Define some matrix of
node similarities (adjacency, Laplacian, or higher-order) and factorize
it (via eigen-decomposition/SVD). E.g.:
> Adjacency spectral embedding (ASE).
» Laplacian eigenmaps (just covered).
> Katz similarity embedding (HOPE algorithm).
» Graph factorisation (explicit low-rank factorisation of adjacency).
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Graph Node Embeddings: Overview

2. Random-walk based (neural) methods: Generate random walks on
the graph, treat them like “sentences” and use word embedding
techniques (like Word2Vec) to learn node vectors. E.g.:

» DeepWalk (Perozzi et al. 2014): uniform random walks + Skip-gram

model.
» node2vec (Grover and Leskovec 2016): biased random walks (with

BFS/DFS flavor) + Skip-gram.
» Others: LINE (first/second order proximity), Struc2vec, etc.
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Graph Node Embeddings: Overview

2. Random-walk based (neural) methods: Generate random walks on
the graph, treat them like “sentences” and use word embedding
techniques (like Word2Vec) to learn node vectors. E.g.:

» DeepWalk (Perozzi et al. 2014): uniform random walks + Skip-gram

model.
» node2vec (Grover and Leskovec 2016): biased random walks (with

BFS/DFS flavor) + Skip-gram.
» Others: LINE (first/second order proximity), Struc2vec, etc.

Key insight: Many of these methods are connected — random walk
methods often implicitly factorise a matrix capturing node co-occurrences,
meaning they have an underlying spectral interpretation.
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Matrix Factorisation: Adjacency and Beyond

» Adjacency Spectral Embedding (ASE): Use the top d eigenvectors
of A (or singular vectors if graph is not symmetric) as embedding.
For an undirected graph, A= XXX (spectral decomposition), take

XdZi/z as n x d embedding (this is akin to PCA on A).
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Matrix Factorisation: Adjacency and Beyond

» Adjacency Spectral Embedding (ASE): Use the top d eigenvectors
of A (or singular vectors if graph is not symmetric) as embedding.
For an undirected graph, A= XXX (spectral decomposition), take
XdZi/z as n x d embedding (this is akin to PCA on A).

P> Interpretation: This gives the best rank-d approximation
Ax A= X4ZyX] . If graph has d well-defined communities (like a
Stochastic Block Model), this can recover community structure (each
eigenvector may correspond to a cluster).

> However, A’s leading eigenvectors often pick up high-degree nodes or
global structures (not necessarily best for clustering if degree
distribution is skewed).
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Random-Walk Embeddings: DeepWalk

DeepWalk (Perozzi et al. 2014):
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DeepWalk (Perozzi et al. 2014):

» For each node u, simulate many random walks of fixed length (e.g.
40). A walk is a sequence u = vp, V1, ..., V¢.
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Random-Walk Embeddings: DeepWalk

DeepWalk (Perozzi et al. 2014):
» For each node u, simulate many random walks of fixed length (e.g.
40). A walk is a sequence u = vp, V1, ..., V¢.
» Treat each random walk as a “sentence” of nodes. For a node v; in
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» For each node u, simulate many random walks of fixed length (e.g.
40). A walk is a sequence u = vp, V1, ..., V¢.

» Treat each random walk as a “sentence” of nodes. For a node v; in
the walk, consider nodes within a window (e.g. +b steps) as its
context (neighbors in the sentence).

» Use Skip-gram with Negative Sampling (SGNS) to learn
embeddings: maximize probability of observing context nodes given
the embedding of center node. This is exactly the Word2Vec
algorithm applied to node sequences.

» Result: each node has a vector h, € RY. Nodes that tend to
co-occur on random walks get similar embeddings. Typically, this
captures communities (since random walks stay within clusters with
higher probability).
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Random-Walk Embeddings: node2vec and others

node2vec (Grover and Leskovec 2016):

» Extends DeepWalk by introducing parameters (p, q) to bias the
random walk. After walking from t to v, the next step is chosen
among neighbors of v with probabilities:

» if going back to t (the previous node) o 1/p (discouraged if p > 1),
» if going to a neighbor of v that is not t: o 1 if that neighbor is “close”
to t (distance 1), < 1/q if it is farther (i.e., exploring outward).

» Effect: g > 1 favors BFS (stay close to t, good for homophily
communities), g < 1 favors DFS (venture far, capturing structural
equivalence).

P> Use the same skip-gram training on these biased walks. node2vec can
interpolate between embedding for community detection vs role
discovery.
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Unifying View: Embeddings as Low-Rank
Approximation

A lot of graph embedding techniques can be viewed as finding a low-rank

approximation to some matrix that encodes similarity between nodes. For
example:

» Spectral clustering: low-rank approximation of Laplacian (use
eigenvectors of L).

» Laplacian Eigenmaps: same as above (just using continuous
embedding instead of clustering).

> Adjacency SVD: low-rank approximation of A.

» DeepWalk/node2vec: low-rank factorisation of PMI matrix built
from D~LA powers.
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Thus, “spectral methods” broadly underpin these algorithms: in many
cases, the optimal embedding could be obtained by an
eigen-decomposition. The difference is often scalability and flexibility:

» DeepWalk/node2vec use SGD to avoid computing large matrices
explicitly, but implicitly they are doing an eigen-like factorisation.

» Spectral clustering gives theoretical guarantees (e.g., eigen-gap and
Cheeger bounds), while deep embeddings often give empirical
improvements (and can incorporate nonlinearity or additional info).

Bottom line: Spectral methods provide the foundation, and modern
embeddings refine them for large graphs and specific tasks.
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Questions?
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