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Outline

▶ We begin with spectral graph theory fundamentals (graphs,
adjacency matrices, Laplacians, eigenvalues and eigenvectors).

▶ Spectral clustering, including graph cut objectives (RatioCut,
Normalised Cut) and their relaxation via eigenvectors.

▶ xc,./Laplacian Eigenmaps and connections to manifold learning.

▶ Node embedding approaches: matrix factorisation methods (like
using adjacency spectra) and random-walk based methods
(DeepWalk, node2vec), highlighting their connections to spectral
techniques.

2 / 39



Outline

▶ We begin with spectral graph theory fundamentals (graphs,
adjacency matrices, Laplacians, eigenvalues and eigenvectors).

▶ Spectral clustering, including graph cut objectives (RatioCut,
Normalised Cut) and their relaxation via eigenvectors.

▶ xc,./Laplacian Eigenmaps and connections to manifold learning.

▶ Node embedding approaches: matrix factorisation methods (like
using adjacency spectra) and random-walk based methods
(DeepWalk, node2vec), highlighting their connections to spectral
techniques.

2 / 39



Outline

▶ We begin with spectral graph theory fundamentals (graphs,
adjacency matrices, Laplacians, eigenvalues and eigenvectors).

▶ Spectral clustering, including graph cut objectives (RatioCut,
Normalised Cut) and their relaxation via eigenvectors.

▶ xc,./Laplacian Eigenmaps and connections to manifold learning.

▶ Node embedding approaches: matrix factorisation methods (like
using adjacency spectra) and random-walk based methods
(DeepWalk, node2vec), highlighting their connections to spectral
techniques.

2 / 39



Outline

▶ We begin with spectral graph theory fundamentals (graphs,
adjacency matrices, Laplacians, eigenvalues and eigenvectors).

▶ Spectral clustering, including graph cut objectives (RatioCut,
Normalised Cut) and their relaxation via eigenvectors.

▶ xc,./Laplacian Eigenmaps and connections to manifold learning.

▶ Node embedding approaches: matrix factorisation methods (like
using adjacency spectra) and random-walk based methods
(DeepWalk, node2vec), highlighting their connections to spectral
techniques.

2 / 39



Spectral Graph Theory Fundamentals
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Graphs and Matrices

A =



0 1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0
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Graphs, Matrices, and Spectra

Graph G = (V ,E ): V nodes, E edges (assume undirected, possibly
weighted).

▶ Adjacency matrix A: Aij = 1 if edge i-j exists (or weight if
weighted), else 0. Symmetric for undirected graphs.

▶ Degree matrix D: diagonal matrix with Dii = deg(i) =
∑

j Aij .

▶ Graph Laplacian L: L = D − A (combinatorial Laplacian).
▶ Properties:

▶ L is symmetric (for undirected G ) and positive semi-definite.
▶ L1 = 0 (since D1 = A1), so 0 is an eigenvalue.

▶ Normalised Laplacians:
▶ Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2 (symmetrised)
▶ Lrw = D−1L = I − D−1A (random-walk Laplacian).
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Eigenvalues and Eigenvectors of L

For an n-node connected graph:

▶ L has n real eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn.

▶ λ1 = 0 (eigenvector 1).

▶ Multiplicity of λ = 0 equals number of connected components.

▶ Orthogonal eigenvectors: L = VΛV⊤, with V = [v1, . . . , vn] and
Λ = diag(λ1, . . . , λn).

▶ Second-smallest eigenvector: v2 (Fiedler vector) associated with
λ2. Often reveals community structure (more later).
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Rayleigh Quotient and Variational Characterisation
For symmetric L, the Rayleigh quotient of a nonzero vector x is:

R(x) :=
x⊤Lx

x⊤x
.

▶ Expanding for L = D − A:

x⊤Lx =
∑
i ,j

Aij(xi − xj)
2/2.

▶ By the Courant-Fischer theorem:

λ2 = min
x⊥1

x⊤Lx

x⊤x
.

▶ The minimum is attained by x = v2 (Fiedler vector).
▶ Constraint x ⊥ 1 (orthogonal to 1) ensures we skip the trivial

eigenvector.
▶ Thus λ2 is the smallest non-zero eigenvalue, solving min x⊤Lx s.t.

x⊤x = 1, x⊤1 = 0.
8 / 39



Cheeger’s Inequality

▶ Conductance (Φ): For a subset S ⊂ V ,

Φ(S) =
cut(S , S̄)

min(vol(S), vol(S̄))
,

where vol(S) =
∑

i∈S deg(i) and cut size: cut(S , S̄) =
∑

i∈S ,j∈S̄ Aij

(Total weight of edges crossing the partition S vs complement).

▶ Cheeger’s inequality: Relates λ2 to the best conductance Φ of any
cut:

λ2

2
≤ Φ ≤

√
2λ2.

▶ Interpretation: A small λ2 implies existence of a cut with small
conductance (a good balanced partition). Conversely, a strong
spectral gap (large λ2) indicates the graph is well-connected (no very
sparse cut).
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Spectral Clustering
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Graph Clustering and Cut Objectives

Goal: Partition graph into k clusters (V1, . . . ,Vk) such that:

▶ Many edges inside clusters, few edges between clusters.

Simple objective: minimise cut(V1, V̄1) for a bisection.

Problem: trivial solution can isolate a single node (very small cut but
unbalanced clusters).
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Graph Clustering and Cut Objectives

To encourage balanced partitions:

▶ RatioCut: for a k-partition,

Rcut(V1, . . . ,Vk) =
k∑

m=1

cut(Vm, V̄m)

|Vm|
.

(Penalise small clusters via |Vm| in denominator.)

▶ Normalised Cut (Ncut):

Ncut(V1, . . . ,Vk) =
k∑

m=1

cut(Vm, V̄m)

vol(Vm)
.

(Denominator uses volume = sum of degrees.)
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Spectral Relaxation of RatioCut (Unnormalised)

RatioCut for k = 2:
cut(S , S̄)

|S |
+

cut(S , S̄)

|S̄ |

(with S ∪ S̄ = V ).

Represent a 2-partition by an indicator vector y ∈ 0, 1n (or ±1n): e.g.
yi = 1 if i ∈ S , 0 if i ∈ S̄ . Alternatively use z ∈ ±1n with zi = ±1
indicating two sides.

One can show:

cut(S , S̄) =
1

4
z⊤Lz

and |S | = 1
2n + 1

2

∑
i zi . (For z ∈ ±1,

∑
i zi = |S | − |S̄ |.)
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Spectral Relaxation of RatioCut (Unnormalised)

▶ The balanced condition |S | = |S̄ | or generally treating |S | as a
constant yields a formulation: minimize z⊤Lz s.t. zi ∈ ±1 and
z⊤1 = 0.

▶ Relax z to take real values: solve the minimisation x⊤Lx s.t.
x⊤1 = 0, x⊤x = n (some normalisation).

▶ Solution: x = v2 (Fiedler vector).

▶ So the relaxed optimal partition: S = i : v2,i > 0 and S̄ = i : v2,i < 0
(or threshold by median).
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Normalised Spectral Clustering (Shi and Malik 2000)
For Normalised Cut, we use the normalised Laplacian. The relaxation
leads to solving:

Lrwx = λx,

with x as the indicator (generalized eigenproblem Lx = λDx).

Algorithm (Normalised Spectral Clustering for k clusters):

1. Compute k eigenvectors v1, . . . , vk of Lsym (or Lrw) corresponding to
the k smallest eigenvalues. (v1 = 1/

√
n is trivial and often discarded

for clustering).

2. Form matrix U ∈ Rn×k with Ui ,j = (vj)i . Each row Ui ,∗ is the
k-dimensional embedding of node i .

3. (Optionally normalise rows if using Lsym to get unit length vectors.)

4. Cluster the points {Ui ,∗}ni=1 in Rk using k-means (or another
clustering in Euclidean space).

5. Assign nodes to clusters according to the k-means output.

For k = 2, this reduces to thresholding v2 as previous slide.
17 / 39
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Choosing Number of Clusters and Practical Notes

▶ How many clusters (k)? One heuristic: look for an ”eigengap” - a
large gap in the magnitude of eigenvalues λk vs λk+1. A big jump
suggests k meaningful clusters.

▶ The eigenvectors can be sensitive to graph structure; noise or
nearly-equal eigenvalues can cause instability. Using k-means on
multiple eigenvectors tends to be more stable for k > 2.

▶ Normalised vs unnormalised: Normalised spectral clustering often
performs better on imbalanced degree graphs, ensuring each cluster
has fair volume. Unnormalized is simpler but may bias toward cutting
off small degree nodes.

▶ Complexity: Computing eigenvectors can be expensive (O(n3) in
worst case). For large graphs, use sparse methods or approximate
eigen-solvers.
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Example: 2-Cluster Spectral Partitioning (Karate
Club)

Zachary’s Karate Club social network (34 nodes, 78 edges). A known split
occurred (two factions after a conflict).

Graph:

▶ Zachary’s Karate Club network. Colors indicate the actual split of the
club. This graph will be partitioned via spectral clustering.

▶ Compute the Fiedler vector (v2 of L). Then cluster by its sign
(unnormalized spectral bi-partition).

Result: Spectral clustering perfectly splits the two factions (except
possibly one node) - the Fiedler vector’s sign corresponds closely to the
true division (correlation 0.86 between v2 and ground-truth split).
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Spectral Embedding Visualisation (Karate Club)

▶ We can embed each node in R2 using the first two nontrivial
Laplacian eigenvectors (v2, v3). Plotting these coordinates:

▶ Embedding of Karate Club nodes in 2D using v2 (horizontal) and v3
(vertical). Green “×” = Mr. Hi’s faction, Red “×” = Officer’s
faction. The two clusters separate clearly along v2 (Fiedler axis).
Some substructure in the green group is visible along v3. This
spectral embedding clusters the nodes naturally.

▶ The second eigenvector (x-axis) clearly divides the two main clusters
(red vs blue). The third eigenvector (y-axis) shows minor splits within
one cluster (less significant). This illustrates how higher eigenvectors
can capture finer structure beyond the first split.
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Laplacian Eigenmaps

Scenario:

▶ We have n data points (nodes), possibly lying on a low-dimensional
manifold embedded in high-dimensional space.

▶ We know pairwise similarities (or build a nearest-neighbor graph).

▶ How to embed them in a lower-dimensional space while preserving
local structure?
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Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):

▶ Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wij reflecting similarity).

▶ Goal: find low-dim coordinates yi ∈ Rd for each node i such that if i
and j are connected, then yi and yj are close. (Preserve local
neighborhood distances.)

▶ Formulate as optimising quadratic form on the graph:

minimise
∑
i ,j

wij∥yi − yj∥2

subject to constraints preventing trivial solution (e.g. 1
n

∑
i yi = 0

and 1
n

∑
i yiy

⊤
i = Id , or simpler: Y⊤DY = I ).

▶ This optimisation can be solved via the bottom d + 1 eigenvectors of
L (excluding the trivial all-ones direction). The solution yi is given by
these eigenvectors (just like clustering but using continuous
embedding).

25 / 39



Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):

▶ Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wij reflecting similarity).

▶ Goal: find low-dim coordinates yi ∈ Rd for each node i such that if i
and j are connected, then yi and yj are close. (Preserve local
neighborhood distances.)

▶ Formulate as optimising quadratic form on the graph:

minimise
∑
i ,j

wij∥yi − yj∥2

subject to constraints preventing trivial solution (e.g. 1
n

∑
i yi = 0

and 1
n

∑
i yiy

⊤
i = Id , or simpler: Y⊤DY = I ).

▶ This optimisation can be solved via the bottom d + 1 eigenvectors of
L (excluding the trivial all-ones direction). The solution yi is given by
these eigenvectors (just like clustering but using continuous
embedding).

25 / 39



Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):

▶ Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wij reflecting similarity).

▶ Goal: find low-dim coordinates yi ∈ Rd for each node i such that if i
and j are connected, then yi and yj are close. (Preserve local
neighborhood distances.)

▶ Formulate as optimising quadratic form on the graph:

minimise
∑
i ,j

wij∥yi − yj∥2

subject to constraints preventing trivial solution (e.g. 1
n

∑
i yi = 0

and 1
n

∑
i yiy

⊤
i = Id , or simpler: Y⊤DY = I ).

▶ This optimisation can be solved via the bottom d + 1 eigenvectors of
L (excluding the trivial all-ones direction). The solution yi is given by
these eigenvectors (just like clustering but using continuous
embedding).

25 / 39



Laplacian Eigenmaps
Laplacian Eigenmaps (Belkin and Niyogi 2003):

▶ Construct a graph G of the data: nodes = data points, edges connect
nearest neighbors (with weight wij reflecting similarity).

▶ Goal: find low-dim coordinates yi ∈ Rd for each node i such that if i
and j are connected, then yi and yj are close. (Preserve local
neighborhood distances.)

▶ Formulate as optimising quadratic form on the graph:

minimise
∑
i ,j

wij∥yi − yj∥2

subject to constraints preventing trivial solution (e.g. 1
n

∑
i yi = 0

and 1
n

∑
i yiy

⊤
i = Id , or simpler: Y⊤DY = I ).

▶ This optimisation can be solved via the bottom d + 1 eigenvectors of
L (excluding the trivial all-ones direction). The solution yi is given by
these eigenvectors (just like clustering but using continuous
embedding).

25 / 39



Laplacian Eigenmaps vs. PCA (Linear methods)

▶ PCA (Principal Component Analysis) finds a linear projection that
best preserves variance (global structure) - it doesn’t account for
nonlinear manifolds. It treats distances between all points equally.

▶ Laplacian Eigenmaps (LE) focuses only on preserving local
neighborhood relationships (it’s a nonlinear method). Far apart
points on the manifold can be projected far apart or even jumbled, as
long as local structures remain.

▶ LE is one of several manifold learning techniques (others: Isomap,
Locally Linear Embedding, Diffusion Maps). It is closely related to
spectral clustering: instead of discrete clusters, we get continuous
coordinates (which could also be used for clustering by further
processing).
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Laplacian Eigenmaps vs. PCA (Linear methods)

▶ Example: Swiss roll manifold. If data lies on a twisted 2D surface
in 3D: PCA would fail to unroll it (since it’s nonlinear). Laplacian
Eigenmaps can “unroll” the manifold by using the graph of nearest
neighbors - eigenvectors of L recover the underlying 2D
parameterisation (up to distortion) (conceptually shown in figure).

▶ Limitations: Requires choosing a neighbourhood graph and weight
scheme; sensitive to graph construction. Eigen-decomposition can be
expensive for very large n.
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Node Embedding Approaches
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Graph Node Embeddings: Overview

Beyond clustering into communities, we often want to represent each node
as a point in Rd (with d ≪ n) for tasks like link prediction, visualisation,
or as features for ML models.

Two broad families:

1. Matrix Factorisation (Spectral) methods: Define some matrix of
node similarities (adjacency, Laplacian, or higher-order) and factorize
it (via eigen-decomposition/SVD). E.g.:
▶ Adjacency spectral embedding (ASE).
▶ Laplacian eigenmaps (just covered).
▶ Katz similarity embedding (HOPE algorithm).
▶ Graph factorisation (explicit low-rank factorisation of adjacency).
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Graph Node Embeddings: Overview

2. Random-walk based (neural) methods: Generate random walks on
the graph, treat them like “sentences” and use word embedding
techniques (like Word2Vec) to learn node vectors. E.g.:
▶ DeepWalk (Perozzi et al. 2014): uniform random walks + Skip-gram

model.
▶ node2vec (Grover and Leskovec 2016): biased random walks (with

BFS/DFS flavor) + Skip-gram.
▶ Others: LINE (first/second order proximity), Struc2vec, etc.

Key insight: Many of these methods are connected — random walk
methods often implicitly factorise a matrix capturing node co-occurrences,
meaning they have an underlying spectral interpretation.
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Matrix Factorisation: Adjacency and Beyond

▶ Adjacency Spectral Embedding (ASE): Use the top d eigenvectors
of A (or singular vectors if graph is not symmetric) as embedding.
For an undirected graph, A = XΣX⊤ (spectral decomposition), take

XdΣ
1/2
d as n × d embedding (this is akin to PCA on A).

▶ Interpretation: This gives the best rank-d approximation
A ≈ Â = XdΣdX

⊤
d . If graph has d well-defined communities (like a

Stochastic Block Model), this can recover community structure (each
eigenvector may correspond to a cluster).

▶ However, A’s leading eigenvectors often pick up high-degree nodes or
global structures (not necessarily best for clustering if degree
distribution is skewed).
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Random-Walk Embeddings: DeepWalk

DeepWalk (Perozzi et al. 2014):

▶ For each node u, simulate many random walks of fixed length (e.g.
40). A walk is a sequence u = v0, v1, . . . , vt .

▶ Treat each random walk as a “sentence” of nodes. For a node vi in
the walk, consider nodes within a window (e.g. ±5 steps) as its
context (neighbors in the sentence).

▶ Use Skip-gram with Negative Sampling (SGNS) to learn
embeddings: maximize probability of observing context nodes given
the embedding of center node. This is exactly the Word2Vec
algorithm applied to node sequences.

▶ Result: each node has a vector hu ∈ Rd . Nodes that tend to
co-occur on random walks get similar embeddings. Typically, this
captures communities (since random walks stay within clusters with
higher probability).
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Random-Walk Embeddings: node2vec and others

node2vec (Grover and Leskovec 2016):
▶ Extends DeepWalk by introducing parameters (p, q) to bias the

random walk. After walking from t to v , the next step is chosen
among neighbors of v with probabilities:
▶ if going back to t (the previous node) ∝ 1/p (discouraged if p > 1),
▶ if going to a neighbor of v that is not t: ∝ 1 if that neighbor is “close”

to t (distance 1), ∝ 1/q if it is farther (i.e., exploring outward).

▶ Effect: q > 1 favors BFS (stay close to t, good for homophily
communities), q < 1 favors DFS (venture far, capturing structural
equivalence).

▶ Use the same skip-gram training on these biased walks. node2vec can
interpolate between embedding for community detection vs role
discovery.
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Unifying View: Embeddings as Low-Rank
Approximation

A lot of graph embedding techniques can be viewed as finding a low-rank
approximation to some matrix that encodes similarity between nodes. For
example:

▶ Spectral clustering: low-rank approximation of Laplacian (use
eigenvectors of L).

▶ Laplacian Eigenmaps: same as above (just using continuous
embedding instead of clustering).

▶ Adjacency SVD: low-rank approximation of A.

▶ DeepWalk/node2vec: low-rank factorisation of PMI matrix built
from D−1A powers.

37 / 39



Unifying View: Embeddings as Low-Rank
Approximation

Thus, “spectral methods” broadly underpin these algorithms: in many
cases, the optimal embedding could be obtained by an
eigen-decomposition. The difference is often scalability and flexibility:

▶ DeepWalk/node2vec use SGD to avoid computing large matrices
explicitly, but implicitly they are doing an eigen-like factorisation.

▶ Spectral clustering gives theoretical guarantees (e.g., eigen-gap and
Cheeger bounds), while deep embeddings often give empirical
improvements (and can incorporate nonlinearity or additional info).

Bottom line: Spectral methods provide the foundation, and modern
embeddings refine them for large graphs and specific tasks.
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Questions?
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