
GNNs for Reinforcement 
Learning



Deep Reinforcement Learning

• Deep Reinforcement Learning is a field of machine learning in 
which we train a neural network model, called a policy, that is 
trained to assign higher probability to actions in states that 
maximise long term expected reward.

• For simple environments, we can use a simple neural network like 
a multi-layer perceptron (MLP) + a softmax function after the final 
layer which takes in a vector representation of the environment’s 
current state and returns a vector of probabilities for each of the 
possible actions in that state. 



A Familiar Example
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A New Example
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The General Idea
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Masking

• If it is possible, then we can create a policy which outputs the 
probability of every conceivable action in a state and then set the 
probability of forbidden actions to zero. 

• For example, in chess there are 4164 ways of moving any piece on 
the board if they were unimpeded. In most positions, one or more 
pieces will have some moves unavailable to them due to other 
pieces being in the way

• The policy outputs a length 4164 vector of log-probabilities, the 
illegal actions are set to -1e10 and the softmax function is applied.



Shortcomings

• Masking is a very efficient way of creating a policy which can be 
applied to environments in which the number of legal actions 
varies with time.

However,

• To apply masking, we require a priori knowledge of the largest 
possible number of actions we can take in a state in the 
environment.



Deep Sets, GNNs and Transformers

• These are three types of neural network that can operate on sets 
rather than fixed dimensional inputs (Recurrent Neural Networks 
also have this property but have an implicit sequential bias)

• The common element between these three network architectures 
is that they all contain some way of aggregating over elements in 
the input set to obtain a representation of the set as a whole.

• They differ in the manner in which relations between elements are 
considered.



Deep Sets

• Deep sets lie at one end of the spectrum, they do not consider the 
relationships between elements of the set before the aggregation 
is applied.

𝑓 𝑥𝑖 = 𝜌 ⊕𝑖 𝜙(𝒙𝑖

• If we’re using this as a value function, a function that assigns a 
scalar value to each state representing the expected future reward, 
then the function can be expected to capture some relationship 
between elements of the state.

• If we derive a policy function from this architecture, then we want 
to forgo the aggregation.



Transformers

• At the other end of the spectrum, we have transformers in which 
the attention mechanism captures pair-wise interactions between 
elements in the input set. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝐾

𝑉

• We can remove the positional encoding layer in the transformer to 
make it permutation invariant.



GNNs

• The original transformer architecture is essentially a Graph 
Attention Network Applied to a fully connected graph between 
elements in a set.

• If we use a GNN based function in reinforcement learning, we can 
impose a graph structure on our problem, which can be useful for 
making the model more computationally lightweight and more 
likely to learn relationships between elements that matter.

• This graph structure represents our implicit knowledge about 
which relationships we expect to have higher importance in a 
given problem.



Janossy Pooling

• Janossy Pooling handles the construction of permutation invariant 
functions over sets of arbitrary size by averaging over all possible 
permutations of the input set.

𝑓 𝑋 =
1

𝑆𝑛


𝜋∈𝑆𝑛

𝜙 𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑛)

• This will typically be computationally intractable and 
approximations will be used instead



Summary 

• Here are 3 (4) examples of permutation invariant functions that can be 
applied to sets of arbitrary size.

• They can be generalized as GNNs applied to a spectrum of “graph” 
structures of the state (an unconnected graph for deep sets, a fully 
connected graph in the case of transformers and then any flavour of 
GNN sitting in the intermediate spaces)

• So, consider the application of GNNs to environments in reinforcement 
learning in which we have an unordered set of elements. 

• I haven’t mentioned this yet but this kind of model enables 
generalization of the policy to problem instances larger than those seen 
in training



Routing Problems

• These type of models can be naturally applied to routing problems.

• If we take input data in the form of customer locations, then we 
can construct a graph on this data using a Euclidean K nearest 
neighbour algorithm

•  Policies trained in this manner can be applied to problem 
instances larger than those present in the training data and show 
good generalization ability

• Of particular interest is how we can apply a model like this to 
dynamic routing problems.



Conclusions

• The alphastar work mentioned earlier is an example of using an 
attention mechanism to learn relationships between elements 
within a reinforcement learning policy.

• For reinforcement learning to be useful in environments that are 
not subject to controls, having a policy like these can adapt more 
easily to the presence of additional elements in a state seems 
important.
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