
GNNs for Reinforcement
Learning

Deep Reinforcement Learning

• Deep Reinforcement Learning is a field of machine learning in
which we train a neural network model, called a policy, that is
trained to assign higher probability to actions in states that
maximise long term expected reward.

• For simple environments, we can use a simple neural network like
a multi-layer perceptron (MLP) + a softmax function after the final
layer which takes in a vector representation of the environment’s
current state and returns a vector of probabilities for each of the
possible actions in that state.

A Familiar Example

𝐶𝑎𝑟𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝐶𝑎𝑟𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑃𝑜𝑙𝑒 𝐴𝑛𝑔𝑙𝑒
𝑃𝑜𝑙𝑒 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

State

MLP
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑠ℎ𝑖𝑛𝑔 𝐶𝑎𝑟𝑡 𝐿𝑒𝑓𝑡

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑠ℎ𝑖𝑛𝑔 𝐶𝑎𝑟𝑡 𝑅𝑖𝑔ℎ𝑡

Actions

Model

A New Example

𝐸𝑛𝑒𝑚𝑦 𝑈𝑛𝑖𝑡 1
𝐸𝑛𝑒𝑚𝑦 𝑈𝑛𝑖𝑡 2
𝐸𝑛𝑒𝑚𝑦 𝑈𝑛𝑖𝑡 3

⋮

State

?
𝐴𝑡𝑡𝑎𝑐𝑘 𝐸𝑛𝑒𝑚𝑦 𝑈𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 1

⋮

Actions

Model

The General Idea

State Actions

Masking

• If it is possible, then we can create a policy which outputs the
probability of every conceivable action in a state and then set the
probability of forbidden actions to zero.

• For example, in chess there are 4164 ways of moving any piece on
the board if they were unimpeded. In most positions, one or more
pieces will have some moves unavailable to them due to other
pieces being in the way

• The policy outputs a length 4164 vector of log-probabilities, the
illegal actions are set to -1e10 and the softmax function is applied.

Shortcomings

• Masking is a very efficient way of creating a policy which can be
applied to environments in which the number of legal actions
varies with time.

However,

• To apply masking, we require a priori knowledge of the largest
possible number of actions we can take in a state in the
environment.

Deep Sets, GNNs and Transformers

• These are three types of neural network that can operate on sets
rather than fixed dimensional inputs (Recurrent Neural Networks
also have this property but have an implicit sequential bias)

• The common element between these three network architectures
is that they all contain some way of aggregating over elements in
the input set to obtain a representation of the set as a whole.

• They differ in the manner in which relations between elements are
considered.

Deep Sets

• Deep sets lie at one end of the spectrum, they do not consider the
relationships between elements of the set before the aggregation
is applied.

𝑓 𝑥𝑖 = 𝜌 ⊕𝑖 𝜙(𝒙𝑖

• If we’re using this as a value function, a function that assigns a
scalar value to each state representing the expected future reward,
then the function can be expected to capture some relationship
between elements of the state.

• If we derive a policy function from this architecture, then we want
to forgo the aggregation.

Transformers

• At the other end of the spectrum, we have transformers in which
the attention mechanism captures pair-wise interactions between
elements in the input set.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝐾

𝑉

• We can remove the positional encoding layer in the transformer to
make it permutation invariant.

GNNs

• The original transformer architecture is essentially a Graph
Attention Network Applied to a fully connected graph between
elements in a set.

• If we use a GNN based function in reinforcement learning, we can
impose a graph structure on our problem, which can be useful for
making the model more computationally lightweight and more
likely to learn relationships between elements that matter.

• This graph structure represents our implicit knowledge about
which relationships we expect to have higher importance in a
given problem.

Janossy Pooling

• Janossy Pooling handles the construction of permutation invariant
functions over sets of arbitrary size by averaging over all possible
permutations of the input set.

𝑓 𝑋 =
1

𝑆𝑛

𝜋∈𝑆𝑛

𝜙 𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑛)

• This will typically be computationally intractable and
approximations will be used instead

Summary

• Here are 3 (4) examples of permutation invariant functions that can be
applied to sets of arbitrary size.

• They can be generalized as GNNs applied to a spectrum of “graph”
structures of the state (an unconnected graph for deep sets, a fully
connected graph in the case of transformers and then any flavour of
GNN sitting in the intermediate spaces)

• So, consider the application of GNNs to environments in reinforcement
learning in which we have an unordered set of elements.

• I haven’t mentioned this yet but this kind of model enables
generalization of the policy to problem instances larger than those seen
in training

Routing Problems

• These type of models can be naturally applied to routing problems.

• If we take input data in the form of customer locations, then we
can construct a graph on this data using a Euclidean K nearest
neighbour algorithm

• Policies trained in this manner can be applied to problem
instances larger than those present in the training data and show
good generalization ability

• Of particular interest is how we can apply a model like this to
dynamic routing problems.

Conclusions

• The alphastar work mentioned earlier is an example of using an
attention mechanism to learn relationships between elements
within a reinforcement learning policy.

• For reinforcement learning to be useful in environments that are
not subject to controls, having a policy like these can adapt more
easily to the presence of additional elements in a state seems
important.

References

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., ... & Silver, D. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement learning. nature, 575(7782), 350-354.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. Advances
in neural information processing systems, 30.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all
you need. Advances in neural information processing systems, 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv
preprint arXiv:1710.10903.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020). Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637.

Murphy, R. L., Srinivasan, B., Rao, V., & Ribeiro, B. (2018). Janossy pooling: Learning deep permutation-invariant
functions for variable-size inputs. arXiv preprint arXiv:1811.01900.

Kool, W., Van Hoof, H., & Welling, M. (2018). Attention, learn to solve routing problems!. arXiv preprint
arXiv:1803.08475.

Joshi, C. K., Cappart, Q., Rousseau, L. M., & Laurent, T. (2022). Learning the travelling salesperson problem
requires rethinking generalization. Constraints, 27(1), 70-98.

	Slide 1: GNNs for Reinforcement Learning
	Slide 2: Deep Reinforcement Learning
	Slide 3: A Familiar Example
	Slide 4: A New Example
	Slide 5: The General Idea
	Slide 6: Masking
	Slide 7: Shortcomings
	Slide 8: Deep Sets, GNNs and Transformers
	Slide 9: Deep Sets
	Slide 10: Transformers
	Slide 11: GNNs
	Slide 12: Janossy Pooling
	Slide 13: Summary
	Slide 14: Routing Problems
	Slide 15: Conclusions
	Slide 16: References

