GNNs for Recommender Systems

Cassandra Durr

Agenda

- Types of recommender systems
- Recap of GNNs and GCNs
- A history of graph-based recommender models
 - Early collaborative filtering methods
 - Complex GNN models
 - Simplified graph-aware recommender systems
- Conclusion and references

Recommender Systems

Collaborative Filtering

Goal: Learn long-term user preferences based on historical interactions.

Graph: User-Item Bipartite Graph (users connect only to items)

Use cases: Netflix movie recommendation, Spotify music prediction

Session-based

Goal: Predict the next action based on a short sequence of recent user behaviours.

Graph: Session graph (temporary, session-specific graphs of clicks)

Use cases: Online retail browsing, food delivery apps

Heterogeneous

...

••• ••• ••• ••• ••• ••• ••• •••

...

...

Goal: Model multiple types of entities.

Graph: Multiple node types, multiple edge types

Use cases: Social network

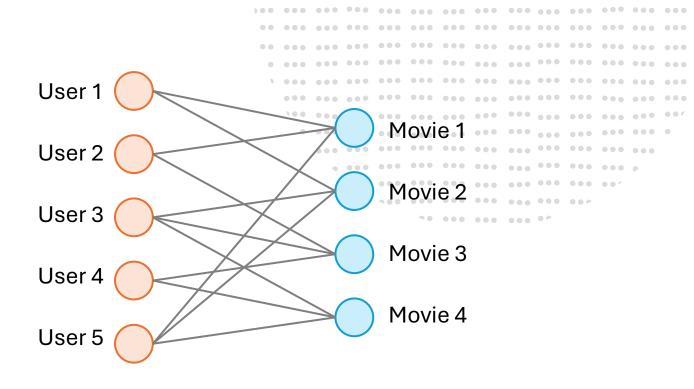
Types of Recommender Systems

Collaborative Filtering

Goal: Learn long-term user preferences based on historical interactions.

Graph: User-Item Bipartite Graph (users connect only to items)

Use cases: Netflix movie recommendation, Spotify music prediction



...

Nodes can be separated into two distinct groups.

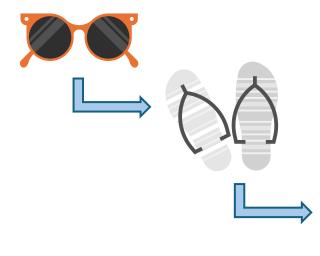
Types of Recommender Systems

Session-based

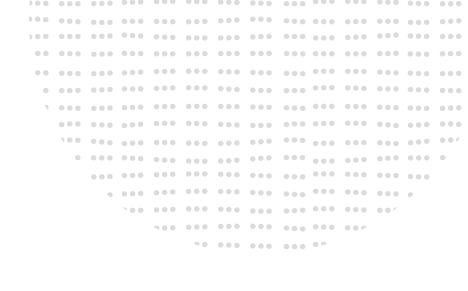
Goal: Predict the next action based on a short sequence of recent user behaviours.

Graph: Session graph (temporary, session-specific graphs of clicks)

Use cases: Online retail browsing, food delivery apps



Sequential transitions Small, directed graphs



...

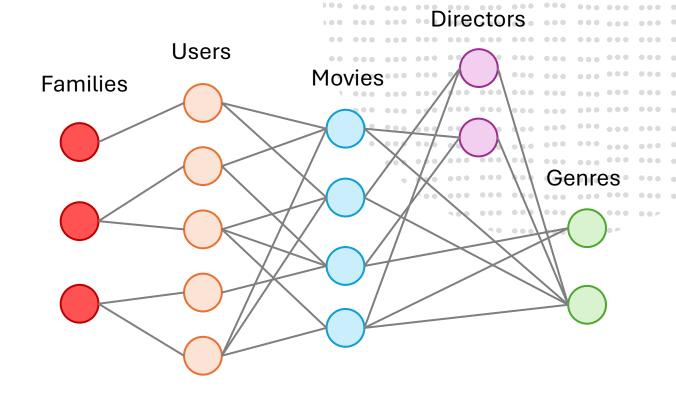
Types of Recommender Systems

Heterogeneous

Goal: Model multiple types of entities.

Graph: Multiple node types, multiple edge types

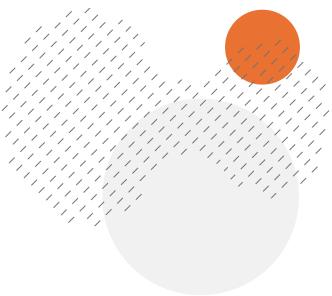
Use cases: Social network



Edges have different meanings based on node types

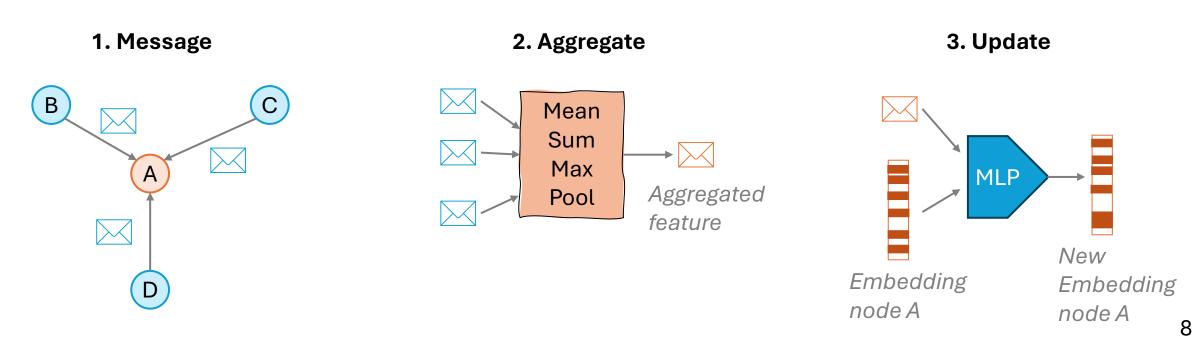
Agenda

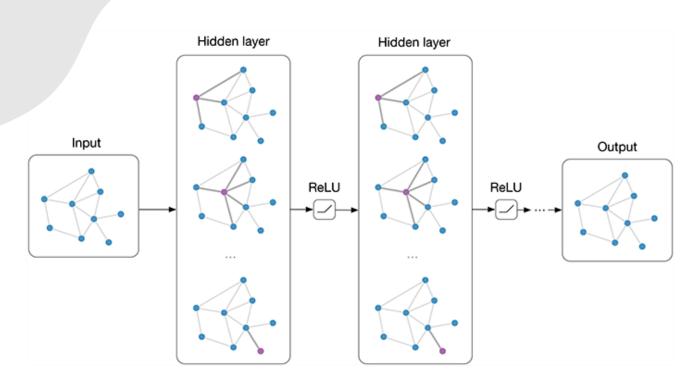
- Types of recommender systems
- Recap of GNNs and GCNs
- A history of graph-based recommender models
 - Early collaborative filtering methods
 - Complex GNN models
 - Simplified graph-aware recommender systems
- Conclusion and references



Graph Neural Network (GNN)

- Neural network designed to process graphical data by learning the relationships between nodes.
- Message passing between nodes to learn node feature representation based on the local neighbourhood





- Kipf & Welling (ICLR 2017)
- Type of GNN that performs graph convolution - a form of weighted averaging of neighbour features.

$$H^{(l+1)} = \sigma \left(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} H^{(l)} W^{(l)} \right)$$

- Adjacency matrix with self-connections added: $\tilde{A}=A+I_n$
- Normalised adjacency matrix: $\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}$, $\widetilde{D}_{ii}=\sum_{j}\widetilde{A}_{ij}$
- Activation function: σ
- Trainable weight-matrix for layer $l: W^{(l)}$
- Node feature matrix for layer $l: H^{(l)}$

Each node updated its representation by **aggregating information from its neighbours**.

Without adding self-loops, the previous representation of a node gets overwritten immediately.

$$H^{(l+1)} = \sigma(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}H^{(l)}W^{(l)})$$

- Adjacency matrix with self-connections added: $\tilde{A} = A + I_n$
- Normalised adjacency matrix: $\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}$, $\widetilde{D}_{ii}=\sum_{j}\widetilde{A}_{ij}$
- Activation function: σ
- Trainable weight-matrix for layer $l: W^{(l)}$
- Node feature matrix for layer $l: H^{(l)}$

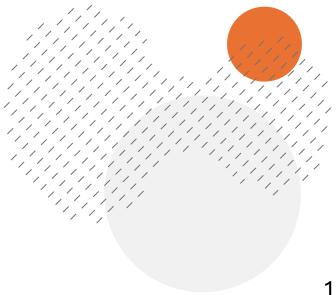
Without normalising the adjacency matrix with the degree matrix, high-degree nodes (nodes with lots of edges) would **overwhelm their neighbours.**

$$H^{(l+1)} = \sigma(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}H^{(l)}W^{(l)})$$

- Adjacency matrix with self-connections added: $\tilde{A} = A + I_n$
- Normalised adjacency matrix: $\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}$, $\widetilde{D}_{ii}=\sum_{j}\widetilde{A}_{ij}$
- Activation function: σ
- Trainable weight-matrix for layer $l:W^{(l)}\longrightarrow$ Linear feature transformation per layer
- Node feature matrix for layer $l:H^{(l)}\longrightarrow$ Message passing

Agenda

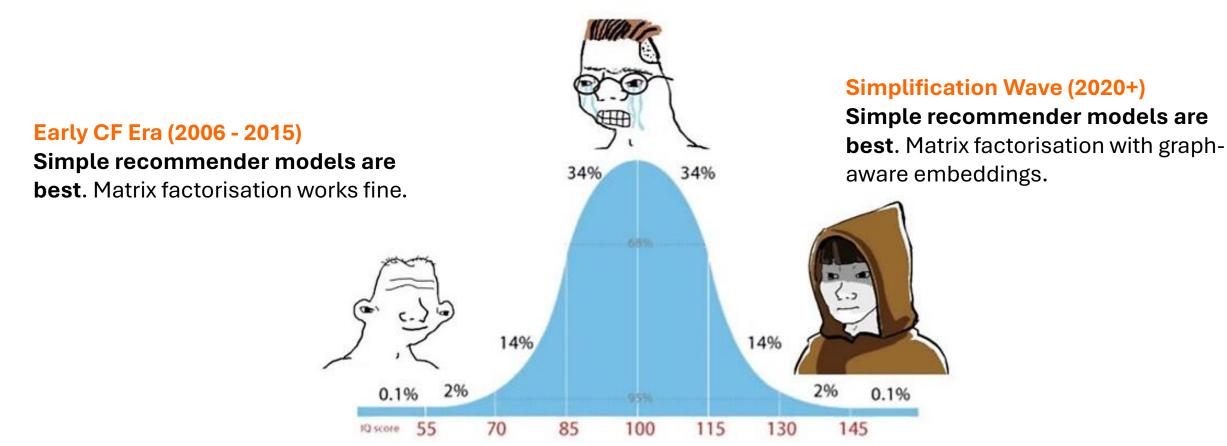
- Types of recommender systems
- Recap of GNNs and GCNs
- A history of graph-based recommender models
 - Early collaborative filtering methods
 - Complex GNN models
 - Simplified graph-aware recommender systems
- Conclusion and references



Timeline of SOTA Graph-Based CF

Complex Deep Learning Era (2016 - 2019)

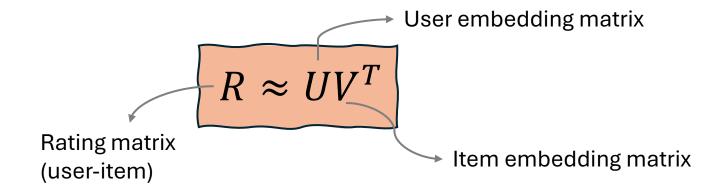
We need to account for higher-order graph connections and use deep neural networks.



Models

- Matrix factorisation
- Bayesian Personalised Ranking
- SVD ++

Matrix Factorisation



- Prediction: $\hat{r}_{ui} = \langle u_u, v_i \rangle$
- Loss: $\min \sum_{u,i} (r_{ui} \hat{r}_{ui})^2 + \lambda_1 ||u_u||_2 + \lambda_2 ||v_i||_2$ Squared error Regularisation
- Requires **explicitly** provided feedback

Bayesian Personalised Ranking

- One-class collaborative filtering system: Does not require explicit feedback only positive feedback.
- Positive signals assumed known, obtain negative signal by randomly sampling user-item pairs with no data.
- Goal: Rank observed positive signals higher than sampled unobserved pairs.

• Loss:

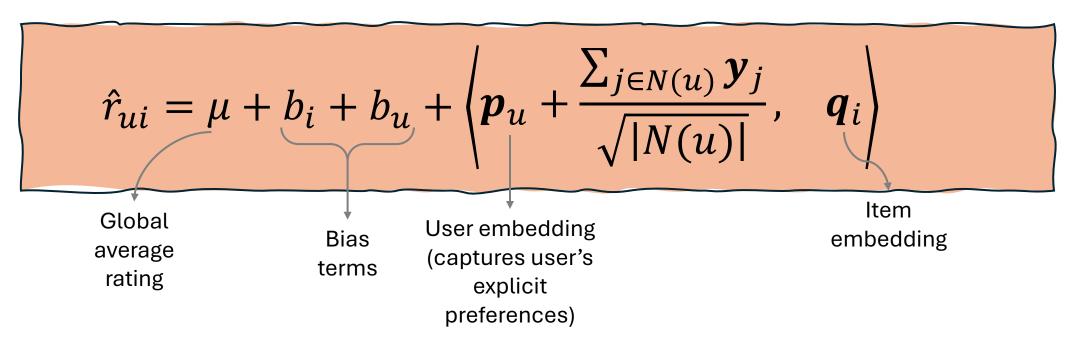
$$\min - \sum_{u,i,j \in D} \ln \left(\sigma(\hat{x}_{ui} - \hat{x}_{uj}) \right) + \lambda \|\Theta\|_2$$
 Regularisation

Predicted score where the user interacted with the item

Predicted score where the user **did not** interact with the item

SVD++

• Extends matrix factorisation model to allow for implicit feedback.



SVD++

• Extends matrix factorisation model to allow for implicit feedback.

$$\hat{r}_{ui} = \mu + b_i + b_u + \left\langle \boldsymbol{p}_u + \frac{\sum_{j \in N(u)} \boldsymbol{y}_j}{\sqrt{|N(u)|}}, \boldsymbol{q}_i \right\rangle$$

- N(u): Set of items that user u has interacted with (implicit feedback set)
- \mathbf{y}_j : Latent vector associated with **implicit item** j, used to enrich user u's profile

SVD++

• Extends matrix factorisation model to allow for implicit feedback.

$$\hat{r}_{ui} = \mu + b_i + b_u + \left\langle \boldsymbol{p}_u + \frac{\sum_{j \in N(u)} \boldsymbol{y}_j}{\sqrt{|N(u)|}}, \quad \boldsymbol{q}_i \right\rangle$$
User profile

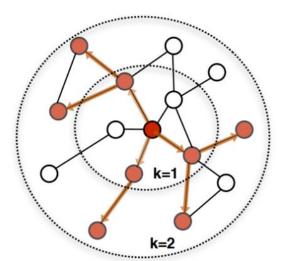
- User profile incorporates implicit feedback
- Why is this useful? Strong recommendations can be given even if a user has not explicitly provided ratings.

Limitations of early CF

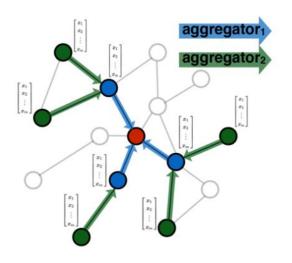
Limitation	Impact
X No structure or graph reasoning	Can't model transitive preferences (A likes B, B likes C, so maybe A likes C)
X No high-order connectivity	Doesn't capture similarity through neighbours
>> Poor generalisation on sparse users/items	Needs many interactions to learn reliable embeddings

Developments in GNNs

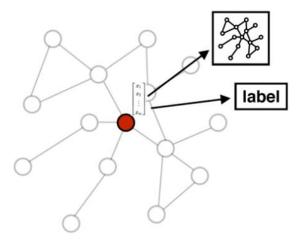
- GCN (Kipf & Welling, 2017): initially introduced for the purpose of semisupervised classification. Later, applied to recommender systems.
- GraphSAGE (Hamilton et al., 2017): introduced as a model to learn highquality node embeddings for downstream tasks.



1. Sample neighborhood



2. Aggregate feature information from neighbors



3. Predict graph context and label using aggregated information

Deep, Graph-Powered Recommender Models

- Graph Convolutional Matrix Completion (GCMC) (Berg, Kipf & Welling, 2017): One of the first direct applications of GCNs to CF. Uses an autoencoder-style setup.
- Neural Graph Collaborative Filtering (NGCF) (Wang et al., 2019): Customises GCNs for collaborative filtering.
- **PinSage (Ying et al., 2018):** first practical, large-scale GNN recommendation system. Combines logic from GCNs and GraphSAGE. Already a simplification of GCNs.

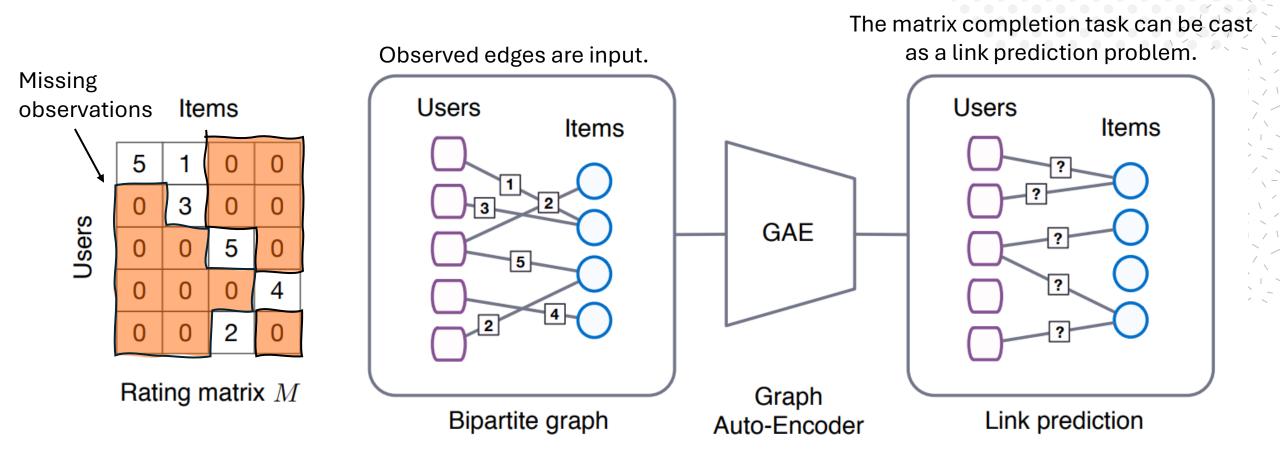
Graph Convolutional Matrix Completion (GCMC) (Berg, Kipf & Welling, 2017)

- GCN paper introduced at ICLR 2017 by Kipf & Welling.
- GCMC = first direct application of GCNs to collaborative filtering problem.

Key novelty:

Applying GCNs in an **autoencoder setup** for collaborative filtering, where a shared GCN encoder learns representations for users/items from interaction graphs, followed by decoding to predict ratings.

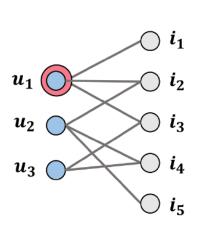
Graph Convolutional Matrix Completion (GCMC) (Berg, Kipf & Welling, 2017)



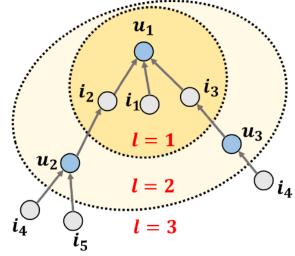
GCN encoder and MLP decoder

Neural Graph Collaborative Filtering (NGCF) (Wang et al., 2019)

Multi-hop collaborative signal modelling



User-Item Interaction Graph



High-order Connectivity for u_1

- Goal: Inject collaborative signal directly into user/item embeddings.
- Achieves goal by leveraging high-order connectivity in the user-item interaction graph.
- Stack multiple graph convolution layers to capture higher-order connections.

Neural Graph Collaborative Filtering (NGCF) (Wang et al., 2019)

NGCF modifies message passing between nodes.

$$\mathbf{m}_{u \leftarrow i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left[\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right]$$

Traditional message passing

This term mixes the user and item embeddings together before sending the message. The message is personalised to that user.

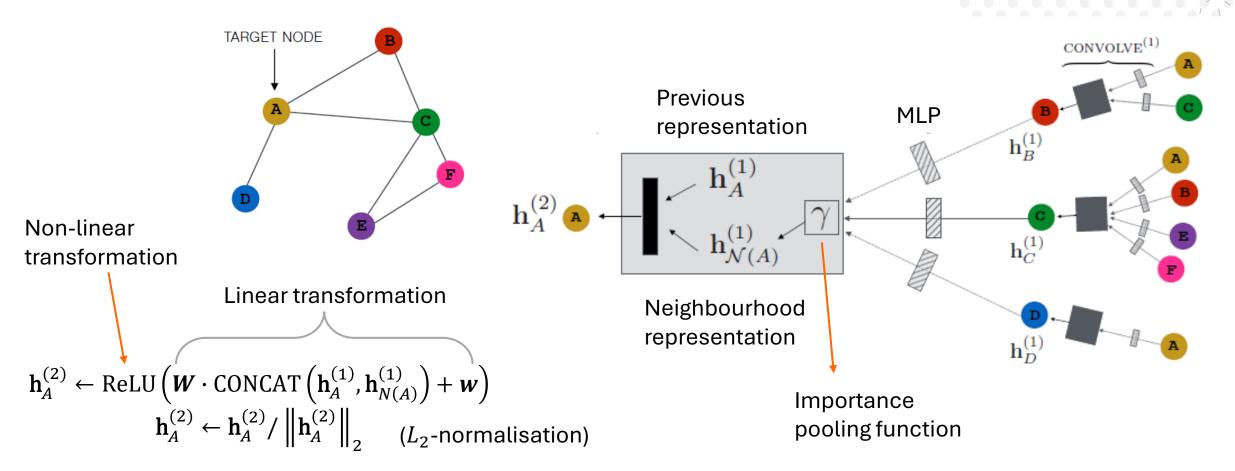
Example: LOTR

GCN: Alice & Ben get the same message: "you liked LOTR"

NGCF:

- Alice: "You liked the rich fantasy world."
- Ben: "You liked the epic battle scenes."

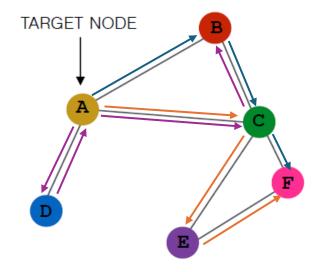
PinSage (Ying et al., 2018):



PinSage (Ying et al., 2018):

Efficient neighbourhood sampling

- In traditional GCNs, you compute on the entire graph, which is infeasible at large scale.
- PinSage uses random
 walk-based importance
 sampling to find the top T
 most relevant neighbours.



- 1. Start at a node
- 2. Perform many short random walks from the starting node
- 3. Count how frequently each neighbouring node is visited
- 4. Pick the top T most frequently visited nodes.
- 5. Aggregate features from these for learning.

PinSage (Ying et al., 2018):

- The first scalable GNN recommender system deployed at web scale (Pinterest).
- Focused on **industrial engineering challenges** like efficient neighbourhood sampling.
- Combines ideas from **GraphSAGE** (local neighbourhood sampling) and **GCN** (graph convolution updates).

Bridge between the complex learning era and the subsequent simplification wave.

Why Simplify?

The complex GNN models of 2016 – 2019 brought rich modelling capacity, but also real-world challenges:

- Expensive to scale (especially full-graph operations)
- Overfitting on sparse interaction data
- Complicated training pipelines

New Goal: Keep the Graph Knowledge, Drop the Complexity

Models

PinSage (Ying et al., 2018)

Bridge between the Complex Era and the Simplification Wave.

LightGCN (He et al., 2020)

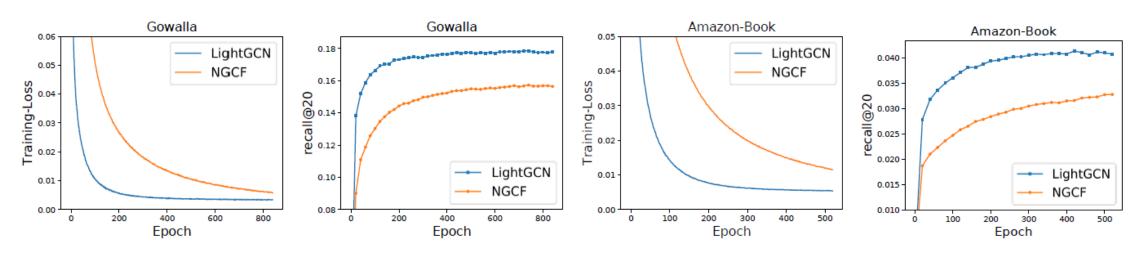
- Removes linear transformations and non-linear activation
- Just linear aggregation
- Strong performance

UltraGCN (Mao et al., 2021)

- Removes GCN layers entirely no message passing, back to basic embeddings
- Pure embedding model with graph regularisation
- Nearly as fast as matrix factorisation

LightGCN (He et al., 2020)

- Modifies NGCF by stripping away many features:
 - Non-linear activation
 - Self-loops
 - Personalisation in message passing
- Achieves 16% performance boost over NGCF with faster convergence



LightGCN (He et al., 2020)

Aggregated messages to user u from neighbouring items

NGCF (layer k+1)

NGCF embedding update (layer k+1)
$$\mathbf{e}_{u}^{(k+1)} = \sigma \left(\mathbf{W}_{1} \mathbf{e}_{u}^{(k)} + \sum_{i \in N(u)} \frac{1}{\sqrt{N(i)N(u)}} \left(\mathbf{W}_{1} \mathbf{e}_{i}^{(k)} + \mathbf{W}_{2} \left(\mathbf{e}_{u}^{(k)} \odot \mathbf{e}_{i}^{(k)} \right) \right) \right)$$
Self-connection Personalisation/ interaction term

ullet For NGCF, after L rounds of propagation, you **concatenate** all learned embeddings to create the final embeddings:

$$\mathbf{e}_{u} = \left[\mathbf{e}_{u}^{(0)}, \mathbf{e}_{u}^{(1)}, \dots, \mathbf{e}_{u}^{(L)}\right] \text{ per user}$$

$$\mathbf{e}_{i} = \left[\mathbf{e}_{i}^{(0)}, \mathbf{e}_{i}^{(1)}, \dots, \mathbf{e}_{i}^{(L)}\right] \text{ per item.}$$

LightGCN (He et al., 2020)

embedding
$$\mathbf{e}_{u}^{(k+1)} = \sigma \left(\mathbf{W}_{1} \mathbf{e}_{u}^{(k)} + \sum_{i \in N(u)} \frac{1}{\sqrt{N(i)N(u)}} \left(\mathbf{W}_{1} \mathbf{e}_{i}^{(k)} + \mathbf{W}_{2} \left(\mathbf{e}_{u}^{(k)} \odot \mathbf{e}_{i}^{(k)} \right) \right) \right)$$
 update

LightGCN embedding
$$\mathbf{e}_{u}^{(k+1)} = \sum_{i \in N(u)} \frac{1}{\sqrt{N(i)N(u)}} \mathbf{e}_{i}^{(k)}$$
 update

LightGCN final embeddings:

$$\mathbf{e}_u = \sum_{l=0}^{L} \alpha_l \mathbf{e}_u^{(l)}$$
 per user

$$\mathbf{e}_i = \sum_{l=0}^{L} \alpha_l \mathbf{e}_i^{(l)}$$
 per item

LightGCN (He et al., 2020)

Why does this work?

- Learning \mathbf{W}_1 and \mathbf{W}_2 and applying a non-linear activation is useful in semi-supervised node classification (original use of GCN architecture) but not CF.
- By dropping self-loops, embeddings at different layers stay distinct. Summing those layers preserves diversity, preventing all nodes collapsing to the same mean ("over-smoothing").
- Fewer parameters leads to a simpler loss landscape. Training converges faster and with less risk of overfitting.

LightGCN (He et al., 2020)

Is this still a GCN?

GCN

$$H^{(l+1)} = \sigma(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} H^{(l)} W^{(l)})$$

- $\tilde{A} = A + I$
- \widetilde{D} is the degree matrix of \widetilde{A}

LightGCN

$$E^{(l+1)} = D^{-1/2}AD^{-1/2}E^{(l)}$$

- No learnable weight matrix
- No activation function
- No self-loops
- D is degree matrix of A

UltraGCN (Mao et al., 2021)

- Strips the LightGCN formulation → "ultra-simplified" formulation
- Pure embedding model with graph regularisation.
- Removes message passing mechanism → approximates the limit of infinite-layer graph convolutions through a constraint loss.
- As $L \to \infty$, that process converges: each node's final embedding satisfies a **fixed-point equation**:

$$E = D^{-1/2} A D^{-1/2} E \rightarrow E \approx PE$$

UltraGCN (Mao et al., 2021)

- Loss function: $L = L_O + \lambda L_C + \gamma L_I$
- L_0 : Ranking binary cross-entropy loss (rank true user-item pairs higher than negative sampled pairs)
- L_C : User-item constraint loss
- L_I : Item-item constraint loss

$$\mathcal{L}_C = -\sum_{(u,i)\in N^+} \beta_{u,i} \log \left(\sigma(e_u^\top e_i)\right) - \sum_{(u,j)\in N^-} \beta_{u,j} \log \left(\sigma(-e_u^\top e_j)\right)$$

Where L_C effectively minimises the difference $||e_u - (PE)_u||_2$ where $(PE)_u = \sum_{i \in N(u)} \beta_{u,i} e_i$ as $L_c \propto -\sum_{(u,i) \in N^+} \beta_{u,i} e_u^T e_i$

UltraGCN (Mao et al., 2021)

Is this still a GCN? No

- X No neighbour aggregation
- X No multi-layer propagation
- X No graph convolution
- **U** Just learns embeddings and applies **graph-regularised loss**

What is UltraGCN then?

Latent factor model enhanced with embedded graph information.

Isn't UltraGCN Just Old-School CF in Disguise?

- Embeddings-only model like standard MF but informed by graph structure.
- Constraint losses derived from GCN fixed-point
- Graph structure baked in via $\beta_{u,i}$ weights (user-item) and $\omega_{i,j}$ weights (item-item) weights
- Runs as fast as MF yet captures multihop proximity in one shot.

Agenda

- Types of recommender systems
- Recap of GNNs and GCNs
- A history of graph-based recommender models
 - Early collaborative filtering methods
 - Complex GNN models
 - Simplified graph-aware recommender systems
- Conclusion and references



Conclusion

• Graph awareness matters – Modelling interactions as a graph captures valuable structural signals that traditional methods miss.

Conclusion

- **Graph awareness matters** Modelling interactions as a graph captures valuable structural signals that traditional methods miss.
- Simplicity wins in production LightGCN and UltraGCN simplify the learning process and still match or beat deeper GNNs while slashing training and inference cost.

Conclusion

- **Graph awareness matters** Modelling interactions as a graph captures valuable structural signals that traditional methods miss.
- Simplicity wins in production LightGCN and UltraGCN simplify the learning process and still match or beat deeper GNNs while slashing training and inference cost.
- Complexity is a cost, not a goal ML often adds depth and complexity, but in a production recommender system you should only pay for complexity that measurably improves your key metrics.

References

Bayesian Personalised Ranking

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. *arXiv preprint arXiv:1205.2618*.

SVD++

Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In *Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 426-434).

GCN

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv* preprint arXiv:1609.02907.

NGCF

Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July). Neural graph collaborative filtering. In *Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval* (pp. 165-174).

LightGCN

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). LightGCN: Simplifying and powering graph convolution network for recommendation. In *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval* (pp. 639-648).

References

PinSage

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining* (pp. 974-983).

GraphSAGE

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30.

GCMC

Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. *arXiv preprint* arXiv:1706.02263.

UltraGCN

Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., & He, X. (2021, October). UltraGCN: ultra simplification of graph convolutional networks for recommendation. In *Proceedings of the 30th ACM international conference on information & knowledge management* (pp. 1253-1262).