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* Quick history lesson
 DDPM
* Coding with PyTorch
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DDPM
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DDPM

We have some data x((,l), ...,x(()N)~qdata(x0)

We want to sample from the data distribution.
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How should we train the neural network?
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DDPM

We have some data x( ). ( ) ~QaataXo)

We want to sample from the data distribution.

N(0.T)
pH(Xt—l|xt]
Oy O @z~

po(xt—1|xt) = N (x¢—1; o(xt, ), o7 1)

How should we train the neural network?
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DDPM

We have some data x( ). (N) ~QaataXo)
We want to sample from the data distribution. 3
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How should we train the neural network?

1
po(xi,t) = \/—074:
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We have some data x( ). (N) ~QaataX0)
We want to sample from the data distribution.
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How should we train the neural network?

PH(Xt—l |Xt) = N(X; i ,ulg(xt, ) I) Maximise a lower bound to the log likelihood of the
data
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po(xi,t) = \/—a—t
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Diffused Data Distributions

Data
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Figure from Probabilistic Machine Learning: Advanced Topics
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Contributions of
the DDPM paper

* New simple and effective weighted variational lower bound to
train diffusion models.

* Hyperparameter choices that lead to good results:
* Constant forward process variances
* Scale data to [-1, 1]
* Train the model to predict noise
* U-Net with self-attention and group normalisation
e T=1000



Time to Code!

What | cannot create, | do not understand.
~Richard Feynman, 1988

Why PyTorch? https:/paperswithcode.com/trends

https://colab.research.google.com/drive/1S3NY8Uj5GYWUXE3kAQvaftsviM1j7Kwl#scrollTo=Qw3n7Fpn4cbc
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