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Diffusion model

Diffusion model defined as joint distribution pr.o(Z7, Z7—-, ..., Z:Zy), where
e Forward “noising” kernels py;—.(Z: | Z:—c) eg. N(Z: | e Z;—., (1 — e_zs) 1.
e Backward “denoising” kernels p,_.|:(Zi— | Zt) e.g. N(Zi—< | (Z: + 2V log p:(Zt)), 2¢l).
e Data distribution po(Zp), of interest.
e Noise distribution pr(Z7) e.g. ~ N(0,/).
For this talk, | will assume that the model is exact, i.e. that

1. No error in estimating the score.

2. No discretization error.

3. pt’tfl(Zt,thl) = pt|t,1(Zt | thl)ptfl(thl) = pt—1|t(Zt71 | Zt)pt(Zt) for all t 2 0.
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Inpainting and key insight

Diffusion model offers a model for the marginal po(Zo).

Inpainting: If the state is Zy = [Xq, Yo] and | have observed Yy, can | sample X | Yo7

HEM
B

Aim: Want to sample from the conditional po(Xo | Yo) without additional training. Morally, if | have
modelled the joint po(Xo, Y0), then | have also implicitly modelled the conditional po(Xo | Yo).

Insight: to do so consistently, exploit various model factorizations.
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The replacement method



Replacement method

See Ho et al. (2020); Song et al. (2021).

Algorithm 1: Replacement method
1. Draw a path Y;,..., YT.
2. Draw X1 ~ p7 (X7 | Y7).
3.Fort=T,T —¢,... e
e Sample X;_c, ~ Pt—c|t (Xe—e | Xty Ye).
4. Retain Xo.

For example, the “context” path could be chosen as:

e Fixed: Y; = Yj for all t.
e A path of the forward process: Y71.. ~ pr.ijo (Y7 | Y0).
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Inconsistency of replacement method

Joint density Conditional densities
0.754
0.50 Exact conditional att = 0
— Replacement w/ fixed context
— Replacement w/ noised context
0.254
0.00 1
T T T T T T T T T T
-1 0 1 2 3 -1 0 1 2 3

Replacement method is inconsistent:

e Conditioning information is too weak at each time-step.

e Method cannot be exact even if there is no score or discretization error.
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Correcting with Langevin steps



Langevin corrector

Fix the time t = 0. Because
Vx, log po (X0, Yo) = Vix, log po (Xo | Yo0) + Vi, log po (Y0) = Vix, log po (X0 | Y0),
in principle, we could sample Xo from the conditional po(Xo | Yo) by iterating Langevin dynamics
Xo + Xo 4+ eVx, log po (Xo, Yo) + V2eZ, Z ~ N(O,1).
This only uses the joint score!

We don’t want to do this: in complex problems, at t = 0 there is a large score error and the mixing
is slow. (Especially if there are multiple modes.)

Instead, we apply several Langevin correctors at each time-step of the replacement method. | will
follow Mathieu et al. (2024, Appendix E), but see also Lugmayr et al. (2022) and Song and Ermon
(2019, Appendix B.3).
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Langevin-corrected replacement method

Algorithm 2: Replacement method w/ Langevin corrector
1. Draw a path Y,..., YT.
2. Draw X7 ~ PT (XT | YT).
3. Fort=T,T —¢,...,e:
e Sample Xi—c,~ pi_c|; (Xe—e | Xe, Ye).
e Update X;_. using L steps of Langevin with score Vx, _logpt—c (Xi—c, Yi—¢)-

4. Retain Xjp.

N> L(Y)
L(Y9)4 L(Y)

Consistent if no discretization error and as number of Langevin steps L — co. Works irrespective of
context path. 6/15



Consistency of Langevin-corrected replacement method

Joint density Conditional densities

0.75 4

Exact conditional at t = 0

0.507 — Replacement w/ fixed context

— Replacement w/ fixed context + 10 corrector steps
Replacement w/ noised context

0.25 4

0.00+=

In practice:

e Notice the discretization error.
e With estimated score, the method can diverge when L — oo.

e Computational cost increases by a factor of L.
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Particle filtering
i.e. consistency by importance weighting




Consistency by weighting

The “vanilla” replacement method is inconsistent because it does not put enough weight on the
conditioning information.
e Suppose that we drew a path Y7.. ~ pr.c (Y72 | Yo) from the noising process.

e When moving t — (t — €) conditional on this path, we know that we should land the context near
ths.

e Replacement method does not use this information.

Idea: use multiple particles, first weight them according to where they should land, then
propagate them forward as in the replacement method.

As it turns out, the right weight (Trippe et al., 2023) is p;_.|¢ (Yi—c | Xt, Y:) and we get a bootstrap
particle filter.
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Bootstrap particle filter

Algorithm 3: Bootstrap particle filter (a.k.a. “SMCDiff")
1. Draw a path Y7.. ~ p1.c (Y72 | Yo) from the noising process.
2. Draw N samples X(TLN) ~ pr (X7 | Y7) =~ N(O, ).
3. Fort=T,T —g,...,e:
o Weight w(k) = p (Yt,e | x5, Yt) , Vk.
e Normalize weights such that >, w(¥) = 1.
e Resample particles Xt(lzN) <— Resample (Xt(lzN), w(liN)) :

e Propagate Xt(f)g ~ Pr_e|t (Xt_6 | Xt(k), Yt> , Vk.

4. Retain one of the Xék).

Consistent if no discretization error and as number of particles N — oo.

Must run the entire procedure multiple times to obtain i.i.d. samples.
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Factorization of the model ensures that procedure is correct.

For ease of notation, set € = 1. Consider the factorization:

p(X7:t, Y1:t) = p(X7(211)s Y7(e1))P(Xes Ye | X7oea1), YTo(e11))
= p(X1i(e41)s YTi(e41))P(Xe, Yi | Xega, Yen) (joint is Markov)
= p(X1(e+1) Y7:(e41))P(Ye | Xex1, Yer1)p(Xe | Xes, Yes1). (separable dynamics)

By Bayes' rule,
P(XT:t | YT:t) X P(XT:(t+1) | YT:(t+1))P( Yi ‘ Xii1, Yt+1)P(Xt ‘ Xit1, Yt+1).

Insight: if we sampled from this and only kept the marginal X:, we would have a sample from X; | Y7..

Integrating,
p(Xe | Y1) o /P(Xt+1 | Y7er1))P(Ye | Xewt, Yerr)p(Xe | Xet1, Yer1)dXeqa

(Continues on next slide.)
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Recall:
p(Xe | Y1) /P(Xt+1 | Y7 e41))P(Ye | Xevr, Yer1)p(Xe | Xera, Yep1)dXeq1.

So, if we have an approximation
N
P(Xer1 | Yresn) = D Oxtk)
k=1
then our approximation to p(X: | Y1) is

N
p(Xe | Yre) = > w®p(Xe | X1, Yern),
k=1

where w o p(Y | Xt+17 Yii1) then normalized.

We sample N particles with equal weight from this by (i) deciding on the mixture component k using
), then (i) sampling from the mixture component.
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A plethora of other methods

Inpainting:

e Better SMC algorithms (Wu et al., 2023; Corenflos et al., 2024).

e Mild generalization: SMC for linear inverse problems Dou and Song (2024).

e Particle MCMC (Corenflos et al., 2024): use the fact that the particle filter gives an unbiased
approximation to the marginal likelihood.

More general conditioning:

e Train the model against the condition score V7 log p:(Z: | y) directly.

e Train a separate classifier model p:(y | Z;) and use it with
Vzlogpi(Z: | Y) = Vzlogpi(Z:) + Vzlogpi(y | Z),

see e.g. Song et al. (2021).
e The “guidance” heuristic (Dhariwal and Nichol, 2021; Ho and Salimans, 2021), see Chidambaram
et al. (2024) for analytical insight into what this does.

Review paper Zhao et al. (2024).
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