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Declaration

A lot of this info comes from 2 sources:

• Reinforcement Learning: An Introduction - Sutton & Barto, 2nd
edition

• David Silver lecture series.
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Recap

Markov Decision Process

Markov Decision Process: ⟨S,A,P,R, γ⟩
• States: S
• Actions: A
• Transition Probabilities: P
• Reward Function: R
• Discount Factor: γ
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Recap

All we need is reward

Return - total discounted reward from this time step onwards:

Episodic:

Gt =
T∑

k=t+1

γk−t−1Rk

Continuing:

Gt =
∞∑
k=0

γkRt+k+1

End up with this reccursion:

Gt = Rt+1 + γGt+1

Adam Page Tabular RL Feb 2025 4 / 38



Prerequisites Monte Carlo Methods Temporal-Difference methods

Recap

State(-Action) Value Functions

Policy, π, gives π(a|s) = P(a|s).
Value of a state:

vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

P(s ′, r | s, a)
[
r + γEπ

[
Gt+1 | St+1 = s ′

]]
=

∑
a

π(a|s)
∑
s′,r

P(s ′, r | s, a)
[
r + γvπ(s

′)
]

Similarly, value of taking an action in this state, and then following π:

qπ(s, a) = Eπ[Gt | St = s,At = a]

=
∑
s′,r

P(s ′, r | s, a)
[
r + γvπ(s

′)
]

(or γqπ(s
′, a′))
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Recap

Optimal Value Functions

If an optimal policy exists:

v∗(s) = max
a

∑
s′,r

P(s ′, r | s, a)
[
r + γv∗(s

′)
]

q∗(s, a) =
∑
s′,r

P(s ′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)

]
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Recap

Dynamic Programming: Generalised Policy Iteration
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Our First Learning Algorithm

Issues

q∗(s, a) =
∑
s′,r

P(s ′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)

]

• Misspecified

• Intractable

• Unknown

• Computationally intensive on memory
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Our First Learning Algorithm

Agent-Environment Interactions

We model the desired environment as a Markov Decision Process. Learn
from simulated experience.

Environment

Agent

State
St

Reward
Rt

St+1

Rt+1
Action

At

Estimate Q(S ,A) ≈ q∗(S ,A) can be stored in tabular size S ×A.
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Our First Learning Algorithm

Monte Carlo Methods

S

A

S

A

A

As the name suggests, Monte Carlo
methods solve the RL problem based
on averaging sample returns.

As in Generalised Policy Iteration we
have 2 questions:

• Prediction: What is vπ(s)?

• Control: Starting from π0, can
we find π∗?
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Our First Learning Algorithm

Monte Carlo Prediction

Aim: Evaluate vπ(s).

We can also consider every-visit MC methods.
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Our First Learning Algorithm

Convergence

Monte Carlo methods will converge. That is V (s)→ vπ(s) as nvisits →∞.

For first-visit MC, each return is an i.i.d. estimate of vπ(s) with finite
variance. By law of large numbers the estimates will converge to their
expected value.

Each average is an unbiased estimate and the standard deviation of its

error falls as
1

√
nvisits

.

Both first-visit and every-visit MC converge quadratically to vπ(s).
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Our First Learning Algorithm

Monte Carlo Control

If we have a model, knowing v(s) is sufficient to determine a policy. Look
ahead one step and choose the action that leads to the best combination
of reward and next state. (i.e., R(s, a, s ′) + v(s ′))

With no model available, we now need to evaluate q·(s, a) in order to
suggest a policy.

Luckily for us, this is also needed in order to find an optimal policy, π∗.
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Our First Learning Algorithm

Setting Up Monte Carlo Control

Aim: Find q∗(s, a). Gives us π∗.
We once again look at the GPI framework.

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ . . .

I−→ π∗
E−→ qπ∗ .
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Our First Learning Algorithm

Policy Improvement

Policy improvement is done by making the policy greedy with respect to q:

π(s)
.
= argmax

a
q(s, a)

Construct πk+1 as the greedy policy with respect to qπk
. Via the Policy

Improvement Theorem (see Rui’s notes):

qπk
(s, πk+1(s)) = qπk

(s, argmax
a

qπk
(s, a)))

= max
a

qπk
(s, a)

≥ qπk
(s, πk(s))

≥ vπk
(s).

Gives us that MC can be used to give us optimal policies.
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Our First Learning Algorithm

Monte Carlo Control
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Our First Learning Algorithm

Note On Exploring Starts

|S × A| ≥ |S| so it is feasible that it may take a while to visit all
state-action pairs.

Also note that by following a greedy policy we may never visit certain
actions although being the corresponding state quite frequently.

To ease these issues (and guarantee convergence) we enforce exploration.
This can be done through random starts or having a stochastic policy.
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Our First Learning Algorithm

Gridworld

G
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Our First Learning Algorithm

Starting Information

G
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Our First Learning Algorithm

Monte Carlo RL Gridworld Agent

G
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Our First Learning Algorithm

Extras

• MC control without exploring starts

• Prediction via importance sampling

• Incremental Implementable

• Discounting aware importance sampling

• Per-decision importance sampling
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Intuition

q∗(s, a) =
∑
s′,r

P(s ′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)

]

• MC-RL: ≈ Returns(S ,A)

• Why wait?
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Temporal-Difference Learning

• TD methods learn directly from experience without knowledge of the
environment’s dynamics. Similar to MC Methods.

• TD methods update estimates somewhat based on other learned
estimates, without waiting for final outcome (bootstrapping). Similar
to DP.
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Targets and Errors

MC and TD use experience to solve the prediction problem. For MC we
wait until the return, Gt has been evaluated and then use Gt as a target
for current estimate V (St). The update step could instead be written as:

V (St)← V (St) + α [Gt − V (St)]︸ ︷︷ ︸
error

← (1− α)V (St) + αGt

where α is some step-size.
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TD Prediction

Using the earlier intuition, TD methods need only wait until the next time
step. At time t + 1 the agent immediately forms a target and updates
using the reward Rt+1 and the current estimate of V (St+1).
A simple TD method update:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] ,

with this update being made every time step.

• MC Target: Gt

• TD Target: Rt+1 + γV (St+1)
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TD Error

Difference between estimated value of St and better estimate, know as TD
Error:

δt
.
= Rt+1 + γV (St+1)− V (St)
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Backup Diagrams

S

A

S

A

A

=⇒

S

A

S'
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Why use TD?

• vs DP: TD methods don’t need a model of the environment.

• vs MC: TD can be implemented in online, incremental settings.

• For a fixed π we have that TD converges to vπ.
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On- and Off- Policy

Before we can start to control need to discuss ‘bootstrapping ’ methods.

When looking at the TD update, specifically Rt+1 + γV (St+1), we base
our update on an already existing estimate. As we are estimating the state
value , V (S), we do not need to consider the action that causes this value
to occur.

For control, we need action value estimates, Q(St+1,At+1), in order to
define a policy. Choice of action may be an issue. If At+1 ∼ π(St+1) we
call this on-policy. The alternative is off-policy.
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On-Policy TD Control

Once again, we return to GPI.

Action values TD update:

Q(St ,At)← Q(St ,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St ,At)]

Let At+1 ∼ π(St+1). On-policy control algorithms we continually estimate
qπ, and at the same time update π toward greediness with respect to qπ.

Each episode has multiple versions of the following quintuple
(St ,At ,Rt+1,St+1,At+1) leading to the following algorithm . . .
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SARSA
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Off-Policy TD Control

As we are trying to find π∗, why not directly estimate q∗ rather than qπ.

Q(St ,At)← Q(St ,At) + α
[
Rt+1 + γmax

a
Q(St+1, a)− Q(St ,At)

]
By acting greedy within our update the learned action value function Q
directly approximates q∗. This is independent of the policy being followed.

Doing this simplifies the analysis of the algorithm and allowed for early
convergence proofs.
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Q-Learning
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Backup diagrams of TD Learners

Sarsa Q-learning

S

A

S'
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Gridworld

G
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Monte Carlo Gridworld Revisited

G
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TD Gridworld Agent

G
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Extras

• Batch MC and Batch TD.

• Expected Sarsa.

• Double learning to reduce on bias.

• n-step Bootstrapping
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