
Transformers



Encoder Decoder



A lookup table with learned parameters. The parameters are 
initialized randomly.  Maps one-hot encodings of words in 
vocabulary to vectors of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 . Consult the 
nn.Embedding class in PyTorch.

Without this addition, the encoder’s output embedding 
would be invariant to the order of the input sequence. The 
positional encoding is a vector of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 . 

Nothing unusual here. Two linear transformations and a ReLU 
activation in between. 𝑑𝑖𝑛 = 𝑑𝑜𝑢𝑡 = 𝑑𝑚𝑜𝑑𝑒𝑙 . With a brief 
enlargement to 𝑑𝑓𝑓 = 2048 after the first layer.

The model uses residual connections, so we need to add 
these back. Then we perform normalization, specifically layer 
normalization. We cannot perform batch normalization with 
varying length sequences



In the encoder, we perform self-attention (aka bidirectional 
attention). The query, keys and values all come from the input 
sequence. 

Nothing unusual here, multiply the query matrix by the key 
matrix.  Resulting matrix will have dims 𝑑𝑠𝑒𝑞  ×  𝑑𝑠𝑒𝑞

Every value in the resulting matrix is scaled by 𝑑𝑘

Mask attention weights according to a Boolean matrix, set True 
entries to −1𝑒8

Apply Softmax to the rows of the matrix

As above, no tricks here. Multiply the attention weights by the 
value matrix. Dim to 𝑑𝑠𝑒𝑞  ×  𝑑𝑣



In multi-head attention, we repeat the sequence of operations from 
the previous slide ℎ times.

Each head 𝑖 ∈ 1, … , ℎ has its own triplet of weight matrices, 

𝑊𝑄
𝑖 , 𝑊𝐾

𝑖 , 𝑊𝑉
𝑖  of dimension, 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘, 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘, 𝑑𝑚𝑜𝑑𝑒𝑙 ×

𝑑𝑣 (respectively), which are applied to the input sequence. 

The output of each head is concatenated. This results in an output 
of dimension 𝑑𝑠𝑒𝑞 × (ℎ ∗ 𝑑𝑣) 

Apply scaled dot-product attention on 
the linearly transformed query, key and 
values for each head.

A final linear layer is applied to the concatenated outputs, the 
weight matrix for this layer 𝑊𝑜 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙  brings our 
embeddings back to 𝑑𝑚𝑜𝑑𝑒𝑙 .



The output sequence, (shifted right), we begin with a start token.

As for the encoder, with the caveat that we use the masking of 
attention weights to ‘hide’ future elements of the output sequence 
from the model (during training). 

Once again, fundamentally the same as previously but this time the 
keys and values are the embedded input sequence, and the queries 
are the decoder output so far.

The final task of the decoder is to turn the embedding so far into 
the right form for the task. In the paper this task is a sequence-to-
sequence translation, therefore the decoder outputs a probability 
over the vocabulary for each element of the output sequence.

At evaluation time the decoder generates the output sequence one 
element at a time.

During training, the model uses teacher-forcing, it uses the correct 
output from the dataset as the input to the decoder. This means that 
decoding can be parallelised during training. 



Advantages of Transformers

For short sequences, 𝑛2 complexity is better than 𝑑2 complexity (for large sequences there are some tricks)

The maximum path length between sequence elements is 
constant.

If we desire it, we can make transformers invariant to the order of the sequential input. 

Transformers are highly parallelizable (This comes at the cost of large memory requirements)



Other Transformer Architectures

Decoder Only Transformer (Text Generation) (GPT) Encoder Only Transformer (Sentiment Analysis) (BERT)



Transformers in Diffusion Models

Diffusion Transformer architecture



Recommended Further Reading

• The original paper – “Attention is All You Need” – Link

• A technical report produced by DeepMind giving a more 
comprehensive overview of the mathematics of Transformers with 
pseudocode – Link

• A blog post explaining Transformers with many animated diagrams 
explaining each component – Link

• Talk by one of the authors of Attention is All You Need - Link


