
Transformers

Encoder Decoder

A lookup table with learned parameters. The parameters are
initialized randomly. Maps one-hot encodings of words in
vocabulary to vectors of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 . Consult the
nn.Embedding class in PyTorch.

Without this addition, the encoder’s output embedding
would be invariant to the order of the input sequence. The
positional encoding is a vector of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 .

Nothing unusual here. Two linear transformations and a ReLU
activation in between. 𝑑𝑖𝑛 = 𝑑𝑜𝑢𝑡 = 𝑑𝑚𝑜𝑑𝑒𝑙 . With a brief
enlargement to 𝑑𝑓𝑓 = 2048 after the first layer.

The model uses residual connections, so we need to add
these back. Then we perform normalization, specifically layer
normalization. We cannot perform batch normalization with
varying length sequences

In the encoder, we perform self-attention (aka bidirectional
attention). The query, keys and values all come from the input
sequence.

Nothing unusual here, multiply the query matrix by the key
matrix. Resulting matrix will have dims 𝑑𝑠𝑒𝑞 × 𝑑𝑠𝑒𝑞

Every value in the resulting matrix is scaled by 𝑑𝑘

Mask attention weights according to a Boolean matrix, set True
entries to −1𝑒8

Apply Softmax to the rows of the matrix

As above, no tricks here. Multiply the attention weights by the
value matrix. Dim to 𝑑𝑠𝑒𝑞 × 𝑑𝑣

In multi-head attention, we repeat the sequence of operations from
the previous slide ℎ times.

Each head 𝑖 ∈ 1, … , ℎ has its own triplet of weight matrices,

𝑊𝑄
𝑖 , 𝑊𝐾

𝑖 , 𝑊𝑉
𝑖 of dimension, 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘, 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘, 𝑑𝑚𝑜𝑑𝑒𝑙 ×

𝑑𝑣 (respectively), which are applied to the input sequence.

The output of each head is concatenated. This results in an output
of dimension 𝑑𝑠𝑒𝑞 × (ℎ ∗ 𝑑𝑣)

Apply scaled dot-product attention on
the linearly transformed query, key and
values for each head.

A final linear layer is applied to the concatenated outputs, the
weight matrix for this layer 𝑊𝑜 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 brings our
embeddings back to 𝑑𝑚𝑜𝑑𝑒𝑙 .

The output sequence, (shifted right), we begin with a start token.

As for the encoder, with the caveat that we use the masking of
attention weights to ‘hide’ future elements of the output sequence
from the model (during training).

Once again, fundamentally the same as previously but this time the
keys and values are the embedded input sequence, and the queries
are the decoder output so far.

The final task of the decoder is to turn the embedding so far into
the right form for the task. In the paper this task is a sequence-to-
sequence translation, therefore the decoder outputs a probability
over the vocabulary for each element of the output sequence.

At evaluation time the decoder generates the output sequence one
element at a time.

During training, the model uses teacher-forcing, it uses the correct
output from the dataset as the input to the decoder. This means that
decoding can be parallelised during training.

Advantages of Transformers

For short sequences, 𝑛2 complexity is better than 𝑑2 complexity (for large sequences there are some tricks)

The maximum path length between sequence elements is
constant.

If we desire it, we can make transformers invariant to the order of the sequential input.

Transformers are highly parallelizable (This comes at the cost of large memory requirements)

Other Transformer Architectures

Decoder Only Transformer (Text Generation) (GPT) Encoder Only Transformer (Sentiment Analysis) (BERT)

Transformers in Diffusion Models

Diffusion Transformer architecture

Recommended Further Reading

• The original paper – “Attention is All You Need” – Link

• A technical report produced by DeepMind giving a more
comprehensive overview of the mathematics of Transformers with
pseudocode – Link

• A blog post explaining Transformers with many animated diagrams
explaining each component – Link

• Talk by one of the authors of Attention is All You Need - Link

