Flow Matching

An alternative approach to generative modelling
Chris Nemeth - 27/11/24

Motivation

e Prior sample z(S)
Flow o
z(0) B

How do we transport the mixture of Gaussians distribution to the two the two moons
distribution?

Introduction

* This talk is largely based on this great blog post: htips://mlg.eng.cam.ac.uk/
blog/2024/01/20/flow-matching.html

 Flow matching in a sentence;

“Flow matching (FM) combines aspects from Continuous Normalising Flows
(CNFs) and Diffusion Models (DMs), alleviating key issues both methods
have.”

* |n this talk I’'ll cover the following:
 Normalising flow and their continuous-time variants
* Flow matching and conditional flow matching

« Some examples of how FM works.

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Normalising Flows

» Normalising Flows transform a simple base distribution g,(x) into a complex
distribution p(y) using an invertible and continuously differentiable mapping ¢.

» Using the change-of-variable rule, the density p,(-) is given by:

0~ 1(y)
dy

1) = qo(¢~ () |det ———

= & with x = ¢~ 1(y)

det [%(x)] |

. Notethat p o p~! = Id.

Normalising Flows: Gaussian Example

» Let’s assume that we have a Gaussian gy(x) = J/ (u, c°)

» Let’s use a linear mapping function ¢(x) = ax + b

* Using the change-of-variables formula (or simpler the linear property of
Gaussians):

pi(y) = N (y;au + b, a*c?)

Normalising Flows

* Naturally, if we want to use normalising flows for generative modelling, then
the mapping ¢ has to be sufficiently complex, i.e. a neural network, which
we parameterise by 0, where now ¢,.

» We can estimate 6 using maximum likelihood estimation,

argmaxy k£, pllogp;(x)]

» If ¢y is a neural net, then for normalising flows, how do we ensure that ¢, is
invertible, computable and its Jacobian is computable?

Normalising Flows

e Residual flow:

$(x) = X + Suy (x)

where u,(x) is a neural network (which apparently has a similar structure to a residual

network). This is one choice of transformation which people seem to think balances
between expressivity and computability.

e \We can then stack these transformations to create a flow:

¢ =¢k° .oy o gy
 Model log-likelihood:

oy !
0%t 1

K
log g(y) = logp(¢~'(») + Y log det () | with x5 = @t o o ')

k=1

Continuous-Time Normalising Flows

o If our flow is defined as @(x) = x + ou(x) for some 0 > 0, then we can
rearrange 1o get

P(x) — x
5

» Ifwesetd = 1/Kandlet K = o0, then the flow ¢ o ..., o ¢, o ¢h; is given
by the ODE:

= u(x)

dx, I Xps =% @x) — X,
— = lim - -
dz 0—0 %) o)

= u,(x,).

Continuous-Time Normalising Flows

 The flow ODE ¢, : [0,1] X | 4 _ R%js defined s.t.

dg,

= 1(P(Xp)).

» In other words, ¢, maps the initial condition x;, to the ODE solution at time ¢

[

X, = P(xg) = xy+ J u(x,)ds.
0

» So, we have the mapping ¢,(-), but for a normalising flow we also need
log det of the Jacobian!

Continuous-Time Normalising Flows

 We need to find the density p, for ¢, (or equivalently u,), which we can get via the
Transport Equation

0
Ept(xt) = — (V ' utpt) (x,)

* The total derivative in log-space (after some manipulation of the above)

d
E =logpx) = —(V - u)(x)

which leads to the log-density

[

log p, = log py(xy) — J (V -u)(x,)ds
0

Continuous-Time Normalising Flows

* Recall, the log-density is

[

log p; = log py(xp) — J (V- ug)(x,)ds
0

however we don’t have access to the vector field u,, but we can approximate it with a
neural network uy : R, X | 4 5 R4 to produce a parametric model

1

log py(x) :=log p;(x) = log py(xy) — J (V - uy)(x)dr.
0

» We can now use an ODE solver to estimate x, and log p, by solving

d B X, B Uy, x,)
dr log p, -\ =div Uy (t, x,)

Discrete Vs. Continuous Time

 Why should we use a continuous normalising flow??

1.

Continuous normalising flows (CNFs) automatically determine the number
of residual flow steps K via an adaptive solver, using an error threshold €
to set the discretisation step size 0, where K = 1/6. Unlike residual
flows, where distinct parameters Hk are used for each layer, CNFs share

parameters over time 7.

In residual flows, training requires ensuring u, is 1/0-Lipschitz to maintain
invertibility, posing strict constraints. CNFs only require u,(¢, x) to be

Lipschitz in x, with no specific constant, making this condition easier to
enforce in neural architectures.

Training CNFs

 We can learn the parameters of the CNF using maximum likelihood
estimation.

Z) =E,., |logp,(x),

where the expectation is taken over the data distribution and p, Is the
parametric model.

» Calculating the log-likelihood requires integrating the time-evolution for

samples x, and log-likelihood log p,, which both depend on u,. This is
requires expensive numerical ODEs!

e Can we train the CNF without the ODE integration??

Flow Matching

 Flow matching is a way of training a CNF by formulating the problem as a regression
objective, wrt a parametric vector field u,,

3(6’) — L 200,1] _prt [Hu(g(t, .X) o I/l(t, X)HQ],

where u(t, x) is the vector field which creates the probability path p, that interpolates
between p, and p;, I.e.

1

log(p;) = log(py) — [(V- u,)(x)d?
0

» Of course solving the above regression requires access to u(z, x). So how do we
estimate u,?

Flow Matching

» Obviously, we require a “valid” u(t, x), but there is no unique vector field for mapping p, to p;.

Conditional Flows

 Recall that the transport equation relates the vector field u, to the probability path p,

opx)
ot

which means that finding u, or p, is equivalent.

— V- (u(0)p,(x))

« We can express the probability path p, as the marginal over a latent variable

px) = [p(z)pﬂz(xt | z)dz

where Py Z()c | 7) is called the conditional probability path, which satisfies some
boundary conditions t = 0 and r = 1 so that p, is valid interpolation between g, and g,

Conditional Flows

» We have access to data samples x; ~ ¢, so let’s just set z = Xx;, which gives

px) = Jq (X1)Pt\ 1 ([x)dx

 |In this set-up, the conditional probabillity path P has to satisfy the boundary
conditions

Pox|x;)) =py and
p1(x‘x1) = «/V(x‘xpﬁz-

mmI) — 5x1(x) aS Opin — 0

» Typically, we would choose py(x) = A4 (x; 0,1).

Continuous Flows: Gaussian Example

Conditional Flows

 The conditional probability path also satisfies a transport equation

apt(x ‘ xl) o
ot

where u,(x | x,) is the conditional vector field.

— V (ux | x)px]x))

» But we really want the marginal vector field u,(x), which we now have

u(x) = E, (6] x))]

[0
PAx)

X1

Flow Matching and Conditional Flow Matching

* Recall the flow matching objective:

Len(0) = E,g10.17.00p L1161, X) = u(t, 2)||°]

» We can use the conditional vector field u (x| x;) and marginalise x;

—F 2
gCFM(e) _ tN%[O,1],x1~q,xt~pt(x\x1)[Hu@(ta X) o ut(x | xl)H]
» These loss functions are equivalent in that V,Zm\(0) = VoL cpm(0)

* Note that in CNFs there is no enforced preference over the vector field u,,

whereas in CFM the vector field is dependent on on the conditional vector
field.

Continuous Flows: Gaussian Example

» We need to choose a probability path p (x| x;) and a conditional vector field
l/lt(X | xl)-

* [o make things simple, we can choose

pt(x\xl) — ﬂ/(ﬂz(xl)a Ut(xl)zl)

» We set py(x;) = 0 and 00(x1)2 = 1], so all probability paths converge to
px) = N (x]|0,I) at r = 0. We also set, u;(x;) = x; and 6,(x;) = 6,,;,, SO
that p,(x | x;) is a Gaussian concentrated at x;.

» A simple choice for the mean p, and std o, is a linear interpolation

Continuous Flows: Gaussian Example

» A simple choice for the mean p, and std o, is a linear interpolation

u(x,) =tx;, ofx;)=U-—-1+1t0,,
pix) =xp, 6(x) =—1+ 0,

 Thm. 3 Iin the paper shows that for this set-up, the conditional vector field is

6,(x)
o(X1)
x;— (1 =o)X
1 — (1 -0t

ut(x | xl) — (X — ﬂt(xl)) + ﬂz(xl)

Issues with Flow Matching

 The main issue Is the crossing path phenomenon, which leads to:

1. Non-straight marginal paths -> ODE is harder to integrate

2. Many possible x; for x, -> high CFM loss variance

Figure 16: Realizations of conditional paths from

() _.(2)
po = p1 = N(0,1) for two different ‘Blz y L1 ™~ 4 with

conditional vector field given by ug(z | 21) = (1 —t)z + iz,

NN
4
: : 'h\ 2% e
. -“.““‘\.‘/'ﬁ;-‘
. o. ﬂ‘ti.; :..1. ‘ “ .y

Figure 17: Paths from Po to P1 following the true marginal
vector field 4t(Z). Paths are highlighted by the sign of the 2nd
vector component.

Issues with Flow Matching

: 2
Recall our loss function: Zepm(9) = Epa10.110,~qux~p el LI H(E X) — 1,(x [x)) |7

(1) (2)
Consider two highlighted paths in the visualization of ut(| 1), with data samples 1 and ¥1 . When learning a

parameterized vector field 8 (2,) via stochastic gradient descent (SGD), we approximate the CFM loss as:

Loeu(®) ~ 5 [uoltz?) —u(t,2) | 2)| + 5 ||uelt,2?) — u(t, 2 |) (19)

2 1 1 (2
where t ~ U|0,1] 531 ,wg)~ 91, and a:i) ~ pi(- | :zzg))7 33§) ~ pi(- | 2)) We compute the gradient with respect

to 6 for a gradient step.

In such a scenario, were attempting to align % (2, %) with two different vector fields whose corresponding paths are
impossible under the marginal vector field u(t,) that we're trying to learn! This fact can lead to increased variance

in the gradient estimate, and thus slower convergence.

Flow Matching with OT

Flow Matching (Lipman et al.) Conditional Flow Matching OT Conditional Flow Matching

Ul N T gy - N T R SN
/N /N /\ AN A A
NN N A A
.S A AA A
N A AN A

7 T~ AT T

Flow Matching with OT

CFM - random data sampling CFM - OT sampling

