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Flow Matching
An alternative approach to generative modelling 



Motivation

How do we transport the mixture of Gaussians distribution to the two the two moons 
distribution?  



Introduction
• This talk is largely based on this great blog post: https://mlg.eng.cam.ac.uk/

blog/2024/01/20/flow-matching.html 


• Flow matching in a sentence: 


“Flow matching (FM) combines aspects from Continuous Normalising Flows 
(CNFs) and Diffusion Models (DMs), alleviating key issues both methods 
have.” 

• In this talk I’ll cover the following:


• Normalising flow and their continuous-time variants 


• Flow matching and conditional flow matching


• Some examples of how FM works.

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html


Normalising Flows
• Normalising Flows transform a simple base distribution  into a complex 

distribution  using an invertible and continuously differentiable mapping . 


• Using the change-of-variable rule, the density  is given by:








• Note that . 
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Normalising Flows: Gaussian Example
• Let’s assume that we have a Gaussian  


• Let’s use a linear mapping function 


• Using the change-of-variables formula (or simpler the linear property of 
Gaussians):


q0(x) = 𝒩(μ, σ2)

ϕ(x) = ax + b

p1(y) = 𝒩(y; aμ + b, a2σ2)



Normalising Flows
• Naturally, if we want to use normalising flows for generative modelling, then 

the mapping  has to be sufficiently complex, i.e. a neural network, which 
we parameterise by , where now .


• We can estimate  using maximum likelihood estimation, 





• If  is a neural net, then for normalising flows, how do we ensure that  is 
invertible, computable and its Jacobian is computable?
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Normalising Flows
• Residual flow: 

 

where  is a neural network (which apparently has a similar structure to a residual 
network). This is one choice of transformation which people seem to think balances 
between expressivity and computability.  


• We can then stack these transformations to create a flow: 

 

• Model log-likelihood: 

, 
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Continuous-Time Normalising Flows 
• If our flow is defined as  for some , then we can 

rearrange to get





• If we set  and let , then the flow  is given 
by the ODE:


. 

ϕ(x) = x + δu(x) δ > 0
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Continuous-Time Normalising Flows 
• The flow ODE  is defined s.t.


.


• In other words,  maps the initial condition  to the ODE solution at time 


.


• So, we have the mapping , but for a normalising flow we also need 
 of the Jacobian! 
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Continuous-Time Normalising Flows 
• We need to find the density  for  (or equivalently ), which we can get via the 

Transport Equation 

 

• The total derivative in log-space (after some manipulation of the above)





which leads to the log-density 
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Continuous-Time Normalising Flows 
• Recall, the log-density is 




however we don’t have access to the vector field , but we can approximate it with a 
neural network , to produce a parametric model


.


• We can now use an ODE solver to estimate  and  by solving
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Discrete Vs. Continuous Time
• Why should we use a continuous normalising flow?


1. Continuous normalising flows (CNFs) automatically determine the number 
of residual flow steps  via an adaptive solver, using an error threshold   
to set the discretisation step size , where . Unlike residual 
flows, where distinct parameters  are used for each layer, CNFs share 
parameters over time .


2. In residual flows, training requires ensuring  is -Lipschitz to maintain 
invertibility, posing strict constraints. CNFs only require  to be 
Lipschitz in , with no specific constant, making this condition easier to 
enforce in neural architectures.
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Training CNFs
• We can learn the parameters of the CNF using maximum likelihood 

estimation. 


,


where the expectation is taken over the data distribution and  is the 
parametric model. 


• Calculating the log-likelihood requires integrating the time-evolution for 
samples  and log-likelihood , which both depend on . This is 
requires expensive numerical ODEs!


• Can we train the CNF without the ODE integration?

ℒ(θ) = 𝔼x∼q1 [log p1(x)]
p1

xt log pt uθ



Flow Matching 
• Flow matching is a way of training a CNF by formulating the problem as a regression 

objective, wrt a parametric vector field .


,


where  is the vector field which creates the probability path  that interpolates 
between  and , i.e. 





• Of course solving the above regression requires access to . So how do we 
estimate ?
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Flow Matching 
• Obviously, we require a “valid” , but there is no unique vector field for mapping  to .





u(t, x) p0 p1



Conditional Flows
• Recall that the transport equation relates the vector field  to the probability path 





which means that finding  or  is equivalent. 


• We can express the probability path  as the marginal over a latent variable 





where  is called the conditional probability path, which satisfies some 
boundary conditions  and  so that  is valid interpolation between  and  
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Conditional Flows
• We have access to data samples  so let’s just set , which gives





• In this set-up, the conditional probability path  has to satisfy the boundary 
conditions 








• Typically, we would choose . 

x1 ∼ q1 z = x1

pt(x) = ∫ q(x1)pt|1(xt |x1)dx1

pt|1

p0(x |x1) = p0 and

p1(x |x1) = 𝒩(x |x1, σ2
minI) → δx1
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Continuous Flows: Gaussian Example 



Conditional Flows
• The conditional probability path also satisfies a transport equation 

 

where  is the conditional vector field.  

• But we really want the marginal vector field , which we now have
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Flow Matching and Conditional Flow Matching
• Recall the flow matching objective:





• We can use the conditional vector field  and marginalise 





• These loss functions are equivalent in that 


• Note that in CNFs there is no enforced preference over the vector field , 
whereas in CFM the vector field is dependent on on the conditional vector 
field. 

ℒFM(θ) = 𝔼t∼𝒰[0,1],x∼pt
[∥uθ(t, x) − u(t, x)∥2]
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∇θℒFM(θ) = ∇θℒCFM(θ)
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Continuous Flows: Gaussian Example 
• We need to choose a probability path  and a conditional vector field 

.


• To make things simple, we can choose 





• We set  and , so all probability paths converge to 
 at . We also set,  and  so 

that  is a Gaussian concentrated at . 


• A simple choice for the mean  and std  is a linear interpolation 
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Continuous Flows: Gaussian Example 
• A simple choice for the mean  and std  is a linear interpolation 





• Thm. 3 in the paper shows that for this set-up, the conditional vector field is 
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Issues with Flow Matching 
• The main issue is the crossing path phenomenon, which leads to:


1. Non-straight marginal paths -> ODE is harder to integrate


2. Many possible  for  -> high CFM loss variance 
x1 xt



Issues with Flow Matching 
ℒCFM(θ) = 𝔼t∼𝒰[0,1],x1∼q,xt∼pt(x|x1)[∥uθ(t, x) − ut(x |x1)∥2]Recall our loss function: 



Flow Matching with OT



Flow Matching with OT

CFM - random data sampling CFM - OT sampling


