
Chris Nemeth - 27/11/24

Flow Matching
An alternative approach to generative modelling

Motivation

How do we transport the mixture of Gaussians distribution to the two the two moons
distribution?

Introduction
• This talk is largely based on this great blog post: https://mlg.eng.cam.ac.uk/

blog/2024/01/20/flow-matching.html

• Flow matching in a sentence:

“Flow matching (FM) combines aspects from Continuous Normalising Flows
(CNFs) and Diffusion Models (DMs), alleviating key issues both methods
have.”

• In this talk I’ll cover the following:

• Normalising flow and their continuous-time variants

• Flow matching and conditional flow matching

• Some examples of how FM works.

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Normalising Flows
• Normalising Flows transform a simple base distribution into a complex

distribution using an invertible and continuously differentiable mapping .

• Using the change-of-variable rule, the density is given by:

• Note that .

q0(x)
p1(y) ϕ

p1(⋅)

p1(y) = q0(ϕ−1(y)) det
∂ϕ−1(y)

∂y
.

=
q0(x)

det [∂ϕ
∂x (x)]

with x = ϕ−1(y)

ϕ ∘ ϕ−1 = Id

Normalising Flows: Gaussian Example
• Let’s assume that we have a Gaussian

• Let’s use a linear mapping function

• Using the change-of-variables formula (or simpler the linear property of
Gaussians):

q0(x) = 𝒩(μ, σ2)

ϕ(x) = ax + b

p1(y) = 𝒩(y; aμ + b, a2σ2)

Normalising Flows
• Naturally, if we want to use normalising flows for generative modelling, then

the mapping has to be sufficiently complex, i.e. a neural network, which
we parameterise by , where now .

• We can estimate using maximum likelihood estimation,

• If is a neural net, then for normalising flows, how do we ensure that is
invertible, computable and its Jacobian is computable?

ϕ
θ ϕθ

θ

argmaxθ 𝔼x∼D[log p1(x)]

ϕθ ϕθ

Normalising Flows
• Residual flow:

where is a neural network (which apparently has a similar structure to a residual
network). This is one choice of transformation which people seem to think balances
between expressivity and computability.

• We can then stack these transformations to create a flow:

• Model log-likelihood:

,

ϕk(x) = x + δuk(x)

uk(x)

ϕ = ϕk ∘ … ∘ ϕ2 ∘ ϕ1

log q(y) = log p(ϕ−1(y)) +
K

∑
k=1

log det [∂ϕ−1
k

∂xk+1
(xk+1)] with xk = ϕ−1

K ∘ …, ∘ ϕ−1
k (y)

Continuous-Time Normalising Flows
• If our flow is defined as for some , then we can

rearrange to get

• If we set and let , then the flow is given
by the ODE:

.

ϕ(x) = x + δu(x) δ > 0

ϕ(x) − x
δ

= u(x)

δ = 1/K K → ∞ ϕK ∘ …, ∘ ϕ2 ∘ ϕ1

dxt

dt
= lim

δ→0

xt+δ − xt

δ
=

ϕt(xt) − xt

δ
= ut(xt)

Continuous-Time Normalising Flows
• The flow ODE is defined s.t.

.

• In other words, maps the initial condition to the ODE solution at time

.

• So, we have the mapping , but for a normalising flow we also need
 of the Jacobian!

ϕt : [0,1] × ℝd → ℝd

dϕt

dt
= ut(ϕt(x0))

ϕt x0 t

xt := ϕt(x0) = x0 + ∫
t

0
us(xs)ds

ϕt(⋅)
log det

Continuous-Time Normalising Flows
• We need to find the density for (or equivalently), which we can get via the

Transport Equation

• The total derivative in log-space (after some manipulation of the above)

which leads to the log-density

pt ϕt ut

∂
∂t

pt(xt) = − (∇ ⋅ ut pt)(xt)

d
dt

= log pt(xt) = − (∇ ⋅ ut)(xt)

log pt = log p0(x0) − ∫
t

0
(∇ ⋅ us)(xs)ds

Continuous-Time Normalising Flows
• Recall, the log-density is

however we don’t have access to the vector field , but we can approximate it with a
neural network , to produce a parametric model

.

• We can now use an ODE solver to estimate and by solving

log pt = log p0(x0) − ∫
t

0
(∇ ⋅ us)(xs)ds

ut
uθ : ℝ+ × ℝd → ℝd

log pθ(x) := log p1(x) = log p0(x0) − ∫
1

0
(∇ ⋅ uθ)(xt)dt

xt log pt

d
dt

= (xt

log pt) = (uθ(t, xt)
−div uθ(t, xt))

Discrete Vs. Continuous Time
• Why should we use a continuous normalising flow?

1. Continuous normalising flows (CNFs) automatically determine the number
of residual flow steps via an adaptive solver, using an error threshold
to set the discretisation step size , where . Unlike residual
flows, where distinct parameters are used for each layer, CNFs share
parameters over time .

2. In residual flows, training requires ensuring is -Lipschitz to maintain
invertibility, posing strict constraints. CNFs only require to be
Lipschitz in , with no specific constant, making this condition easier to
enforce in neural architectures.

K ϵ
δ K = 1/δ
θk

t

uθ 1/δ
uθ(t, x)

x

Training CNFs
• We can learn the parameters of the CNF using maximum likelihood

estimation.

,

where the expectation is taken over the data distribution and is the
parametric model.

• Calculating the log-likelihood requires integrating the time-evolution for
samples and log-likelihood , which both depend on . This is
requires expensive numerical ODEs!

• Can we train the CNF without the ODE integration?

ℒ(θ) = 𝔼x∼q1 [log p1(x)]
p1

xt log pt uθ

Flow Matching
• Flow matching is a way of training a CNF by formulating the problem as a regression

objective, wrt a parametric vector field .

,

where is the vector field which creates the probability path that interpolates
between and , i.e.

• Of course solving the above regression requires access to . So how do we
estimate ?

uθ

ℒ(θ) = 𝔼t∼𝒰[0,1]𝔼x∼pt [∥uθ(t, x) − u(t, x)∥2]
u(t, x) pt

p0 p1

log(p1) = log(p0) − ∫
1

0
(∇ ⋅ ut)(x)dt

u(t, x)
uθ

Flow Matching
• Obviously, we require a “valid” , but there is no unique vector field for mapping to .

u(t, x) p0 p1

Conditional Flows
• Recall that the transport equation relates the vector field to the probability path

which means that finding or is equivalent.

• We can express the probability path as the marginal over a latent variable

where is called the conditional probability path, which satisfies some
boundary conditions and so that is valid interpolation between and

ut pt

∂pt(x)
∂t

= − ∇ ⋅ (ut(x)pt(x))
ut pt

pt z

pt(x) = ∫ p(z)pt|z(xt |z)dz

pt|z(x |z)
t = 0 t = 1 pt q0 q1

Conditional Flows
• We have access to data samples so let’s just set , which gives

• In this set-up, the conditional probability path has to satisfy the boundary
conditions

• Typically, we would choose .

x1 ∼ q1 z = x1

pt(x) = ∫ q(x1)pt|1(xt |x1)dx1

pt|1

p0(x |x1) = p0 and

p1(x |x1) = 𝒩(x |x1, σ2
minI) → δx1

(x) as σmin → 0

p0(x) = 𝒩(x; 0,I)

Continuous Flows: Gaussian Example

Conditional Flows
• The conditional probability path also satisfies a transport equation

where is the conditional vector field.

• But we really want the marginal vector field , which we now have

∂pt(x |x1)
∂t

= − ∇(ut(x |x1)pt(x |x1))
ut(x |x1)

ut(x)

ut(x) = 𝔼x1∼p1|t
[ut(x |x1)]

= ∫ ut(x |x1)
pt(x |x1)q1(x1)

pt(x)
dx1

Flow Matching and Conditional Flow Matching
• Recall the flow matching objective:

• We can use the conditional vector field and marginalise

• These loss functions are equivalent in that

• Note that in CNFs there is no enforced preference over the vector field ,
whereas in CFM the vector field is dependent on on the conditional vector
field.

ℒFM(θ) = 𝔼t∼𝒰[0,1],x∼pt
[∥uθ(t, x) − u(t, x)∥2]

ut(x |x1) x1

ℒCFM(θ) = 𝔼t∼𝒰[0,1],x1∼q,xt∼pt(x|x1)[∥uθ(t, x) − ut(x |x1)∥2]

∇θℒFM(θ) = ∇θℒCFM(θ)

ut

Continuous Flows: Gaussian Example
• We need to choose a probability path and a conditional vector field

.

• To make things simple, we can choose

• We set and , so all probability paths converge to
 at . We also set, and so

that is a Gaussian concentrated at .

• A simple choice for the mean and std is a linear interpolation

pt(x |x1)
ut(x |x1)

pt(x |x1) = 𝒩(μt(x1), σt(x1)2I)

μ0(x1) = 0 σ0(x1)2 = 1
p(x) = 𝒩(x |0,I) t = 0 μ1(x1) = x1 σ1(x1) = σmin

p1(x |x1) x1

μt σt

Continuous Flows: Gaussian Example
• A simple choice for the mean and std is a linear interpolation

• Thm. 3 in the paper shows that for this set-up, the conditional vector field is

μt σt

μt(x1) = tx1, σt(x1) = (1 − t) + tσmin
·μt(x1) = x1, ·σt(x1) = − 1 + σmin

ut(x |x1) =
·σt(x1)
σt(x1)

(x − μt(x1)) + ·μt(x1)

=
x1 − (1 − σmin)x
1 − (1 − σmin)t

Issues with Flow Matching
• The main issue is the crossing path phenomenon, which leads to:

1. Non-straight marginal paths -> ODE is harder to integrate

2. Many possible for -> high CFM loss variance
x1 xt

Issues with Flow Matching
ℒCFM(θ) = 𝔼t∼𝒰[0,1],x1∼q,xt∼pt(x|x1)[∥uθ(t, x) − ut(x |x1)∥2]Recall our loss function:

Flow Matching with OT

Flow Matching with OT

CFM - random data sampling CFM - OT sampling

